Математические олимпиады по лигам. 5-9 классы

Математические олимпиады по лигам. 5-9 классы

В пособии представлены материалы для проведения математических олимпиад по лигам в 5 -9 классах, адаптированных к разным учебникам. Такие олимпиады сочетают увлекательность игры и спортивную соревновательность, развивают интерес к знаниям, память и внимание, активизируют общение и творческую энергию участников.

Для учителей математики, педагогов-организаторов внеклассной работы в общеобразовательных школах, гимназиях и лицеях.

Жанр: Математика
Серия: Внеклассная работа
Всего страниц: 11
ISBN: -
Год издания: Не установлен
Формат: Полный

Математические олимпиады по лигам. 5-9 классы читать онлайн бесплатно

Шрифт
Интервал

Предисловие

Когда мы слышим слово «олимпиада», то ассоциируем его с сильными учащимися, отличниками. Подобный подход оправдан, если речь идет о городских, районных, областных, республиканских, Всероссийских и Международных математических олимпиадах. На таких уровнях сама цель олимпиад – выявление одаренных и нестандартно мыслящих учащихся, определение сильнейших из них. Однако задачи внутришкольных олимпиад нам видятся гораздо шире.

В книге представлен опыт автора по проведению олимпиад в лицее г. Лобни Московской области. Их отличительная особенность: в олимпиадах участвуют все! Причем термин «все» следует понимать в буквальном смысле слова, а именно как 100 %-ный охват учащихся, без исключений. С этим связаны и дифференцирование заданий по уровню сложности, и включение в олимпиады, помимо нестандартных, чисто технических заданий (примеры, уравнения, типовые задачи и т. д.).

Рассмотрим основное содержание и правила проведения наиболее популярных олимпиад, которые и вошли в книгу.

Олимпиады по лигам (5–6 классы)

Новая и чрезвычайно интересная форма внеклассной работы по предмету. Учителя, знающие, как устроены лиги в чемпионатах страны по различным видам спорта, без труда разберутся в этой системе.

Принцип проведения игры прост. Сначала дается общее задание для всех, по результатам которого определяется, кто в какой лиге (второй, первой, высшей или суперлиге) начинает играть.

Далее выбирается день недели, в который постоянно будут проходить соревнования. Выбор дня определяется действующим расписанием. Желательно, чтобы все классы параллели имели одинаковое количество уроков в этот день (напоминаем, что в олимпиаде участвуют все).

Для лучшего понимания рассмотрим правила игры на конкретном примере.

Пусть в параллели пятых классов 53 человека. После предварительного тура 10 человек определены в суперлигу, 15 – в высшую, 15 – в первую и 13 – во вторую. Определен постоянный день игр – четверг.

В первый такой четверг соревнуются участники второй лиги (вторая лига, 1 тур). Они решают шесть заданий за 40–60 мин (время определяется учителем). После проведения первого тура и проверки работ участники, занявшие первые пять мест, переходят в первую лигу. Остальные 8 человек получают места с 53 по 46.

В следующий четверг соревнуются 20 человек (15 человек, определенных первоначально в первую лигу плюс пятеро перешедших из второй лиги). После проверки работ происходит следующее: лучшие 5 участников переходят в высшую лигу; остальные 15 человек получают места с 45 по 31; 5 участников, занявших последние места (в нашем примере 41–45 места), переходят во вторую лигу.

В следующий (третий) четверг соревнуются 20 человек (15 человек, определенных изначально в высшую лигу плюс пятеро перешедших из первой лиги). После проверки работ, как и в предыдущем случае: 5 лучших участников переходят в суперлигу; остальные 15 человек получают места с 30 по 16; 5 участников, занявших 26–30 места, переходят в первую лигу.

В четвертый четверг проходит первый тур суперлиги. Все участники в итоге получают места с 1 по 15, причем участники, занявшие 11–15 места, переходят в высшую лигу.

Затем по тем же правилам проходит второй тур в каждой из четырех лиг, затем третий и т. д.

Если учащийся по болезни или по другим причинам пропускает какой-нибудь тур своей лиги, то он набирает 0 баллов и выбывает в более низшую лигу (а если он во второй лиге – просто занимает последнее место).

В книге представлено два комплекса олимпиад по лигам:

1. Олимпиады по лигам (5–6 классы), адаптированные под учебник Г. В. Дорофеева и Л. Г. Петерсон. Учителя математики знают, что если пятиклассники учатся по учебному комплекту Г. В. Дорофеева и Л. Г. Петерсон, то за 5 класс проходится чуть ли не вся программа 6 класса. Это нашло свое отражение в содержании задач.

Всего в лигах предусмотрено 10 туров. Итоговые результаты подводятся просто (лучше всего это сделать в Excel). Пусть некоторый учащийся в течение десяти туров занимал места: ах, а2, ах... а. Из данных чисел отбрасываются лучший и худший результаты, а далее считается среднее арифметическое оставшихся 8 чисел:

У кого меньше число Ь, тот и выиграл (для сортировки участников по местам можно применить известную в Excel команду РАНГ). Небольшое пояснение: лучший результат отбрасывается, так как бывает случайное попадание учащегося в высшую лигу и суперлигу перед первым туром, а худший результат учащийся также может показать случайно, например, вследствие пропуска по болезни.

Итоговая таблица может выглядеть так:

2. Олимпиады по лигам (5–6 классы), адаптированные под учебник Н. Я. Виленкина и др.

Эти олимпиады четко разделены на два вида:

стандартная лига (примеры, уравнения, типовые задачи и т. д.);

олимпиадная лига (нестандартные задания).

Разделение связано с тем, что в учебном комплекте Н. Я. Виленкина и др. практически отсутствуют задачи на развитие логического мышления (правда, это не является недостатком учебника, просто он преследует другие дидактические цели). А потому есть смысл разделить математическое соревнование учащихся на две части.


Еще от автора Андрей Николаевич Павлов
Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.


Интеллектуальные марафоны в школе. 5-11 классы

В пособии представлены материалы для проведения интеллектуальных марафонов – разнообразных по форме конкурсов знаний учеников 5-11 классов по всем предметам школьной программы. Завоевавшие популярность благодаря телевидению, такие конкурсы сочетают увлекательность игры и спортивную соревновательность, развивают интерес к знаниям, память и внимание, активизируют общение и творческую энергию участников.Для учителей, педагогов – организаторов внеклассной работы в общеобразовательных школах, гимназиях и лицеях.


Рекомендуем почитать
Изумруд

Обычная прогулка в развалинах графского замка, вполне может стать дорогой в другой мир. С билетом в одну сторону...



Двое на карусели

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Дарю тебе звезду

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.