Математические олимпиады по лигам. 5-9 классы - [3]
2. Найдите сумму цифр числах = 1 ? 2 ? 3 ? 4 ? 5 ? 6 ? 7.
3. Сколько метров в 1 см?
4. Подберите такое натуральное число х, чтобы выполнялось равенство 12 – х = х ? х.
5. Встретились три друга – Белов, Серов и Чернов. Чернов сказал другу, одетому в серый костюм: «Интересно, что на одном из нас белый костюм, на другом – серый и на третьем – черный, но на каждом костюм цвета, не соответствующего фамилии». Какой цвет костюма у каждого из друзей?
6. Угадайте два следующих числа в ряду: 5, 8, 14, 26, 50...
4 тур
1. Вычислите 75 764 376: 94–86 004.
2. Решите уравнение 737 – 14 (38 – х) = 205.
3. Запишите двойку тремя пятерками.
4. Кот в сапогах поймал четырех щук и еще половину улова. Сколько щук поймал Кот в сапогах?
5. Как в зале расставить 10 кресел так, чтобы у каждой из четырех стен кресел было поровну? При этом: 1) кресла должны стоять только вдоль стен; 2) если кресло стоит в углу зала, то считается, что оно стоит вдоль сразу двух стен.
6. Три девочки – Соня, Оля и Полина – одновременно сели есть конфеты. Оля и Соня съели вдвоем 11 конфет, Полина и Оля – 15, а Соня и Полина – 14. Сколько конфет съели все три девочки вместе?
5 тур
1. Вычислите 34 128 120: 1703 – 240.
2. Чему равна величина 3х – 1, если 2х + 1 = 7?
3. Все стороны треугольника равны, а его периметр равен 180 см. Найдите площадь квадрата, сторона которого равна стороне треугольника.
4. Сколько минут содержится в 7/10 ч?
5. Нарисуйте какой-нибудь круг. Начертите 4 прямые так, чтобы круг был поделен на 6 частей.
6. Найдите сумму всех двузначных натуральных чисел, которые при делении на 30 дают в остатке 3.
6 тур
1. Когда три подруги – Надя, Валя и Маша – вышли гулять, на них были белое, красное и синее платья. Туфли их были тех же трех цветов, но только у Нади цвета туфель и платья совпадают. При этом у Вали ни платье, ни туфли не были синими, а Маша – в красных туфлях. Определите цвет платьев и туфель каждой из подруг.
2. Башенные часы отбивают три удара за 12 с. В течение какого времени они пробьют шесть ударов?
3. Баба Яга в своей избушке на курьих ножках завела сказочных животных. Все они, кроме двух, – Говорящие Коты; все, кроме двух, – Мудрые Совы; остальные – Усатые Тараканы. Сколько обитателей в избушке у Бабы Яги (саму Бабу Ягу в расчет не принимать)?
4. Какими должны быть два следующих числа в последовательности: 10, 8, 11, 9, 12, 10, 13...?
5. У каких двузначных чисел сумма цифр равна 10?
6. – У меня зазвонил телефон.
– Кто говорит?
– Слон.
... А потом позвонил Крокодил...
... А потом позвонили Зайчатки...
... А потом позвонили Мартышки...
... А потом позвонил Медведь...
... А потом позвонили Цапли...
... Итак, у Слона, Крокодила, Зайчаток, Мартышек, Медведя, Цапель и у меня установлены телефоны. Каждые два телефонных аппарата соединены проводом. Сколько для этого понадобилось проводов?
7 тур
1. Какое число больше: 3/7 или 1/2?
2. Вычислите 2504 ? 706.
3. Решите уравнение Зх + 4 – х – 1 – 2х – 3 = 0.
4. Сколько существует двузначных чисел, которые делятся без остатка на 5?
5. Федя всегда говорит правду, а Вадим всегда лжет. Какой вопрос надо им задать, чтобы они дали на него одинаковые ответы?
6. Десяти собакам и кошкам скормили 56 галет. Каждой кошке досталось 5 галет, а каждой собаке – 6. Сколько было собак?
8 тур
1. В магазине продается сладкая кукуруза в разных банках. В первой банке 300 г кукурузы, и стоит она 18 р. Во второй банке 400 г кукурузы, и стоит она 23 р. Какую банку выгоднее купить и почему?
2. Найдите значение выражения а ? (а + Ь): с при а = 104, b = 23, с = 127.
3. Решите уравнение х + 2х + 3х + 4х + 5х + 6х + 7х = 56.
4. Какой должна быть следующая фигурка в ряду:
5. Во дворе живут 3 девочки и 4 мальчика. Сколькими способами из них можно составить команду, состоящую из двух девочек и двух мальчиков?
6. Найдите такие два натуральных числа, разность кубов которых равна 19.
9 тур
1. Запишите число 30 тремя тройками.
2. Найдите двузначное число, произведение цифр которого равно сумме этих цифр.
3. Можно ли испечь такой торт, который может быть разделен одним прямолинейным разрезом на 4 части?
4. В двух пачках всего 30 тетрадей. Если бы из первой пачки переложили во вторую 2 тетради, то в первой пачке стало бы вдвое больше тетрадей, чем во второй. Сколько тетрадей было в каждой пачке?
5. Вычислите 1/3 + 2/5 – 1/15. Ответ запишите в виде несократимой дроби.
6. Трое туристов должны перебраться с одного берега реки на другой. В их распоряжении старая лодка, которая может выдержать нагрузку всего в 100 кг. Вес одного из туристов 45 кг, второго – 50 кг, третьего – 80 кг. Как должны они действовать, чтобы перебраться на другой берег?
10 тур
1. Мальчик лег спать в 19 ч вечера, поставив будильник так, чтобы он прозвенел в 9 ч утра. Сколько времени проспит мальчик?
2. Делимое в шесть раз больше делителя, а делитель в шесть раз больше частного. Чему равно делимое?
3. Может ли произведение двух чисел быть меньше меньшего из сомножителей? Если нет, то почему? А если да, то приведите хотя бы один пример.
4. На поляну прилетело 35 ворон. Неожиданно вороны взлетели и разделились на две стаи: одна стая уселась на ветви старой березы, а другая – на ольху. Через некоторое время с березы на ольху перелетело 5 ворон, столько же ворон совсем улетело с березы, после чего на березе осталось вдвое больше ворон, чем на ольхе. Сколько ворон было в каждой из двух стай первоначально?
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.
В пособии представлены материалы для проведения интеллектуальных марафонов – разнообразных по форме конкурсов знаний учеников 5-11 классов по всем предметам школьной программы. Завоевавшие популярность благодаря телевидению, такие конкурсы сочетают увлекательность игры и спортивную соревновательность, развивают интерес к знаниям, память и внимание, активизируют общение и творческую энергию участников.Для учителей, педагогов – организаторов внеклассной работы в общеобразовательных школах, гимназиях и лицеях.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.