Математические олимпиады по лигам. 5-9 классы - [2]
Итоги подводятся так же, как и при проведении олимпиад, адаптированных под учебник Г. В. Дорофеева и Л. Г. Петерсон. Те же 10 туров, та же формула для подведения итогов.
Практика показала, что детям очень нравится такое соревнование. Неожиданным и одновременно приятным было то обстоятельство, что учащиеся, занимающие последние места, рвались на игру не хуже «обитателей суперлиги» и также живо обсуждали каждый промежуточный итог игры.
Выражаю большую благодарность своим коллегам: Наталье Михайловне Дорофеевой и Ольге Алексеевне Коржовой, которые вместе с автором книги разработали данную форму проведения математических олимпиад.
Финальная игра (5–6 классы)
Игра названа финальной, так как ее рекомендуется проводить в качестве итоговой к олимпиадам по лигам. В ней соревнуются между собой учащиеся, занявшие одинаковые места в своих классах. Так, из вышеприведенной таблицы следует, что первое место в 5а классе заняла Вертепова Татьяна, в 5б – Углов Денис, в 5в – Заводов Алексей. Значит, в финальной игре они и соревнуются между собой. В нашем случае получаем следующую таблицу участников:
В книге приведено 17 вариантов финальной игры. Если в классе более 17 человек, что характерно для общеобразовательных школ, то задания для последующих вариантов можно взять из учебника или дидактических материалов.
Финальную игру можно провести независимо от олимпиад по лигам; в этом случае за основу берутся учебные показатели учащихся.
Межклассные математические олимпиады
Соревнуются учащиеся 5–9 классов. Привлекать 10–11 классы вряд ли целесообразно ввиду их профилизации.
В книге вы найдете задания трех межклассных олимпиад.
На межклассную математическую олимпиаду № 1 от каждого класса представляются две команды. Общая численность двух команд – не более 12 человек.
За каждое задание можно получить: 0 очков (—), 1 очко ( + ), 2 очка ( + ), 3 очка ( + ).
Очки, набранные командой № 1, умножаются на 1, 5.
В олимпиаду входят:
кроссворд;
технические задания (примеры, уравнения, неравенства и т. д.);
задачи на сообразительность;
геометрические задания;
задачи по комбинаторике.
Класс может выставить на олимпиаду более двух команд (скажем, одну первую и две вторых). В этом случае будет засчитан лучший из результатов. Например, если команда № 1 набрала 11 очков, команда № 2а – 12 очков, команда № 26–14 очков, то класс в целом получает 11 1, 5 + 14 = 30, 5 очков. Время выполнения работы – 60 мин.
На олимпиаду № 2 от каждого класса должны быть представлены три команды: № 1 – самая сильная, № 2 и № 3. В каждой команде должно быть не более 6 человек. Класс может представить более трех команд, например, две команды под № 3. В этом случае будет засчитан лучший из результатов.
Каждой команде выдается листок с заданиями. Около каждого задания стоит количество очков, которое может получить команда в случае верного решения и верного ответа. На решение заданий также отводится 60 мин.
А на олимпиаду № 3 каждый класс представляет 4 команды. В команде не более 6 человек.
Команда № 1 решает 4 олимпиадных задачи, по 5 очков каждая. Команда № 2 решает 5 технически сложных заданий (примеры, уравнения, неравенства, системы, типовые задачи), по 4 очка каждое. Командам № 3 и № 4 предлагается соответственно 6 заданий по 3 очка и 7 заданий по 2 очка, причем задания для команды № 4 взяты из дидактических материалов для общеобразовательных классов. Время выполнения работы – 45–60 мин.
Решения всех задач олимпиад должны быть четкими и подробными. В случае если несколько команд набирают одинаковое количество очков, то оцениваются оформление, рациональность и красота решения.
Важно отметить, что в соревновании принимают участие и слабые учащиеся, причем каждый из них понимает: успех класса от него зависит не меньше, чем от отличников!
Ответы на все задания помещены в конце книги, поэтому в содержании к каждой рубрике приводятся две страницы. Первая указывает место расположения задания, вторая – в скобках – ответ.
Олимпиады по лигам (5–6 классы), адаптированные под учебник Г. В. Дорофеева и Л. Г. Петерсон
Вторая лига
1 тур
1. Вычислите 4506 ? 7568.
2. Периметр квадрата равен 12 м. Найдите площадь квадрата.
3. Найдите значение выражения a: b – с при а = 34 128 120, b= 1703, с = 400.
4. Решите уравнение 148 – 7 ? х = 36.
5. Аня прошла 2 км за 31 мин, а Оля – 4 км за 1 ч. Скорость какой девочки больше и почему?
6. Четыре страны имеют форму треугольников. Нарисуйте, как расположены страны одна относительно другой, если у каждой из них есть общие границы с тремя другими.
2 тур
1. Во сколько раз число 9801 больше, чем 99?
2. Частное равно 7, делимое на 14 больше частного. Найдите делитель.
3. Сколько миллиметров в 4 км?
4. Решите уравнение 4752: (1010 – 2х) = 11.
5. Поставьте между цифрами любые арифметические знаки и скобки, чтобы получить верное равенство: 7 7 7 7 = 8.
6. В семье четверо детей. Им 5, 8, 13 и 15 лет, а зовут их Аня, Юра, Света и Лена. Сколько лет каждому из них, если одна девочка ходит в детский сад, Аня старше, чем Юра, а сумма лет Ани и Светы делится на три?
3 тур
1. На сколько произведение чисел 308 и 22 больше их частного?
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.
В пособии представлены материалы для проведения интеллектуальных марафонов – разнообразных по форме конкурсов знаний учеников 5-11 классов по всем предметам школьной программы. Завоевавшие популярность благодаря телевидению, такие конкурсы сочетают увлекательность игры и спортивную соревновательность, развивают интерес к знаниям, память и внимание, активизируют общение и творческую энергию участников.Для учителей, педагогов – организаторов внеклассной работы в общеобразовательных школах, гимназиях и лицеях.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.