Самые знаменитые головоломки мира

Самые знаменитые головоломки мира

Сборник математических задач и увлекательных головоломок, принадлежащий перу одного из классиков этого жанра Сэма Лойда, несомненно доставит большое удовольствие всем любителям занимательной математики.

Жанры: Математика, Образовательная литература
Серии: -
Всего страниц: 72
ISBN: 5-237-02034-8
Год издания: 1999
Формат: Полный

Самые знаменитые головоломки мира читать онлайн бесплатно

Шрифт
Интервал

От переводчика

Всякая попытка заглянуть в историю занимательной математики неизменно наталкивается на имена «трех китов», без которых трудно представить себе этот раздел научно-популярной литературы. Речь идет о трех замечательных мастерах, чей яркий и своеобразный талант завоевал широкое признание во всем мире. Это Мартин Гарднер, Генри Э. Дьюдени и Сэм Лойд. Конечно, занимательные задачи и головоломки родились не с ними, да и в последние полтора столетия их создавали многие. Достаточно вспомнить Льюиса Кэрролла, Г. Штейнгауза, Я. И. Перельмана, Б. А. Кордемского. И все же три упомянутых автора ярко выделяются на общем фоне, а их творчество во многом определило лицо головоломного жанра.

С М. Гарднером и Г. Дьюдени наши читатели уже знакомы. Издательство «Мир» выпустило в свет три сборника М. Гарднера и две книги Г. Э. Дьюдени.[1] Теперь имеется возможность познакомиться и с третьим классиком жанра – Сэмом Лойдом. Если М. Гарднер наш современник, а творчество Г. Дьюдени относится в основном к началу текущего и лишь частично к концу прошлого века, то основной период творческой активности С. Лойда (1841–1911) приходится на вторую половину прошлого века.

Как самые интересные шахматные головоломки принадлежат не чемпионам по шахматам, так и наиболее увлекательные математические головоломки придуманы отнюдь не ведущими математиками. Для создания их требуется особый дар, особый склад ума. Именно им в избытке и обладал С. Лойд. Больше того, Лойд даже не был профессиональным математиком, однако головоломки его получили известность во всем мире. Увлечение ими порой граничило с «массовым психозом» – именно так произошло, например, со знаменитой головоломкой «игра в пятнадцать».

Познакомившись с головоломками Лойда, любой читатель безошибочно определяет, что автор их – американец. Это чувствуется прежде всего по рекламному стилю его головоломных миниатюр. Так и кажется, что стоишь у какого-то ярмарочного балагана и зазывала заманивает тебя внутрь, прельщая мишурой. Заметно это и по той легкости, с какой автор порой довольно бесцеремонно обращается с историческими лицами и историческими фактами. Здесь и однорукий римский воин, которого император Август награждает крестом святого Андрея, и Авраам Линкольн, решающий вопрос об участке максимальной площади, который можно огородить данным числом жердей. Следует отметить и тот факт, что в головоломках Лойда «занимательная часть» менее органично сочетается с формулировкой задачи, чем в головоломках Дьюдени. Однако все это ни в коей мере не умаляет качества самих головоломок, которые интересны, неожиданны, а подчас и весьма не просты.

Сборник занимательных задач Лойда «Энциклопедия головоломок» был опубликован его сыном уже после смерти автора. Книга пестрела множеством опечаток, неточностей и имела огромный объем. Большую работу по отбору лучших головоломок и основательному редактированию материала проделал М. Гарднер. В результате в свет вышли две сравнительно небольшие книги: «Математические головоломки Сэма Лойда» и «Еще некоторые математические головоломки Сэма Лойда». Предлагаемый читателям сборник представляет собой перевод именно этих двух книг. В него не вошли лишь несколько задач, в основном лингвистического характера, которые рассчитаны сугубо на англоязычного читателя.

Мы надеемся, что с выходом книги наши читатели получат полное представление о творчестве Сэма Лойда и что головоломки этого замечательного мастера доставят им немало приятных минут.


Ю. Сударев

Предисловие

Сэм Лойд, крупнейший американский мастер головоломок, родился в Филадельфии 30 января 1841 года. Три года спустя его отец, состоятельный торговец недвижимостью, переехал в Нью-Йорк, где юный Сэм до семнадцатилетнего возраста посещал общеобразовательную школу. Это был высокий, стройный, уравновешенный индивидуалист, искусный фокусник и способный к подражанию чревовещатель. Он прекрасно играл в шахматы и молниеносно мог вырезать любой силуэт из черной бумаги. Планы молодого человека посвятить себя карьере гражданского инженера испарялись по мере того, как рос его интерес к шахматам.

Бертран Рассел заметил однажды, что в возрасте восемнадцати лет он так увлекся шахматами, что заставил себя бросить игру, боясь в противном случае ничего другого не успеть в жизни. Прими Лойд такое же решение, и, очень может быть, он стал бы прославленным инженером, но тогда мир оказался бы куда беднее в другом отношении – ведь занимательная математика (а шахматные головоломки входят в нее наравне с математическими) представляет собой одну из форм интеллектуальной игры, а кто возьмет на себя смелость утверждать, что для блага человека больше значит «игра» с управляемыми снарядами и атомными бомбами, чем математическая игра?!

Сэм научился играть в шахматы к десяти годам. Первая задача была опубликована одной нью-йоркской газетой, когда автору было всего четырнадцать лет. А спустя четыре года он был уже весьма известен в шахматном мире как автор множества шахматных головоломок. В те дни шахматы пользовались огромной популярностью, газеты и журналы регулярно печатали задачи, присланные читателями, Лойд участвовал в большинстве конкурсов, получая приз за призом благодаря нетривиальности своих задач. В шестнадцать лет он стал вести отдел задач в журнале


Рекомендуем почитать
Рассказы

Опубликовано в журнале "Иностранная литература" № 9, 1989Из рубрики "Авторы этого номера"...Предлагаемые рассказы взяты из книги «Венгерский атом» («Magyar atom». Budapest, Magveto, 1978).


Безоружна и очень опасна

Следователя, ведущего дело мафиозной группировки, сажают в тюрьму по ложному обвинению, а его дочь Ию зверски насилуют. Но девушка, овладевшая приемами каратэ, не только мстит за себя и за отца, но и срывает планы мафии по поставке наркотиков в Россию…


Гвоздь в башке

Олег Наметкин, ставший жертвой терроризма и собственного добросердечия, за мгновение превратился из здорового молодого парня в беспомощного инвалида, навсегда прикованного к постели. Однако в качестве компенсации за мучения он приобрел удивительный дар: теперь его душа может, покидая на время бренную оболочку, путешествовать по ментальному и временному пространству. Но игры со Временем очень опасны: одна из вылазок «душеходца» Наметкина в глубокое прошлое заканчивается катастрофическими последствиями для всего человечества.


Рожденные смертью

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.