Самые знаменитые головоломки мира [заметки]

Шрифт
Интервал

1

Гарднер М. Математические головоломки и развлечения. – М.: Мир, 1971; Математические досуги. – М.: Мир, 1972; Математические новеллы. – М.: Мир, 1974. Дьюдени Г. Э. 520 головоломок. – М.: Мир, 1975; Кентерберийские головоломки. – М.: Мир, 1979.

2

Здесь дается округленное значение. В 1 футе содержится 12 дюймов. – Прим. перев.

3

В 1 ярде содержится 3 фута, или 36 дюймов. – Прим. перев.

4

Имеются в виду семидесятые годы прошлого века. – Прим. перев.

5

В 1 футе содержится 12 дюймов. – Прим. перев.

6

Ныне Калининград. – Прим. перев.

7

Пусть читателя не удивляет надпись на камне и вид диаграммы в нижнем левом углу рисунка, поскольку здесь используется непривычная для него форма записи деления столбиком Чтобы помочь, скажем, что число 6*8*** – это делимое, **9 – делитель, а *53 – частное – Прим перев

8

Штат Техас образовался в результате военного захвата США части мексиканской территории. – Прим. перев.

9

Этот квадрат не обязан быть «местом ночлега», а может быть одним из квадратов, который вы проходите во время «дневного пути». – Прим. перев.

10

В 1 фунте содержится 16 унций. – Прим. перев.

11

Скажем сразу же нашим читателям, что эта головоломка основана на тонкостях англо-американской системы мер веса. Так, если бы в условии задачи фунты были заменены граммами, то здоровью дедушки не угрожала бы никакая опасность. – Прим. перев.

12

В 1 кварте содержится 2 пинты. – Прим. перев.

13

Удар из милосердия (фр.) – удар, которым в средние века приканчивали побежденного на поединке. – Прим. перев.

14

Butcher Boy – мальчик из мясной лавки (англ.).

15

1 галлон = 4 кварты = 8 пинт. – Прим. перев.

16

В англоязычных странах вместо привычной нам десятичной запятой используется десятичная точка. – Прим. перев.

17

Она изображена на рисунке к задаче 178. – Прим. перев.

18

Белая горячка (лат.).

19

1 галлон содержит 231 кубический дюйм.

20

Например, если ставка поднималась до 5 долларов против 1 за то, что лошадь не выиграла, то наши приятели ставили 5 долларов на то, что она выиграет, и в случае выигрыша получали 25 долларов. – Прим. перев.

21

В ряде азартных игр фишки используются как эквивалент соответствующих денежных сумм. – Прим. перев.

22

Генри Джордж (1839–1897) – американский публицист и мелкобуржуазный экономист. Он выступал за национализацию земли или введение высокого налога на частную земельную собственность, что, по его мнению, могло предотвратить рост бедности. – Прим. перев.

23

Подробное обсуждение головоломок на разрезание, многочисленные примеры и даже попытка построить некую теорию приведены в книге Г. Линдгрена «Занимательные задачи на разрезание». (М.: Мир, 1977). – Прим. перев.

24

Трюк состоит здесь в том, что расстоянием между стержнями считается расстояние между соответствующими прямыми, а не между точками (как многие могли подумать), в которых стержни соединяются со ступеньками. – Прим. перев.

25

Подробнее об этой задаче см., например: Барр С. Россыпи головоломок. – М.: Мир, 1978.

26

Представление объема шара в виде суммы объемов пирамид справедливо лишь приближенно. Чтобы соответствующее равенство стало точным, необходимо совершить предельный переход, чем и будет обоснован ответ, приведенный автором. – Прим. перев.

27

Читателю предлагается самостоятельно попытаться найти «наилучшее» русское слово из 12 букв. – Прим. перев.

28

В обеих системах 1 гран равен 64,8 мг. – Прим. перев.

29

См. также Линдгрен Г. Занимательные задачи на разрезание. – М.: Мир, 1977. – Прим. перев.

30

Другими словами, объем шара равен 2/3 объема цилиндра, описанного около этого шара. Действительно, если радиус шара равен R, то площадь основания цилиндра равна πR2, а его высота составляет 2R. Значит, объем цилиндра равен 2πR, a объем шара равен 4/3 πR3. – Прим. перев.

31

Линия погони фигурирует отнюдь не только в занимательных задачах, но и в таком важном разделе прикладной математики, как теория оптимального управления. – Прим. перев.

32

(189-x)/c = 189 – 2x; x/t = 189 – 2x. Отсюда с – t = 1. – Прим. перев.

33

Дьюдени Генри Э. 520 головоломок. – М.: Мир, 1975, задача 341. – Прим. перев.

34

Гарднер М. Математические головоломки и развлечения. – М.: Мир, 1971, с. 474–475. – Прим. перев.

35

1 миля содержит 5280 футов.

36

Более подробно о задачах на разрезание с греческим крестом см. Линдгрен Г. Занимательные задачи на разрезание. – М.: Мир, 1977. – Прим. перев.

37

Дьюдени Г. Э. Кентерберийские головоломки. – М.: Мир, 1979, с. 113.


Рекомендуем почитать
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.


Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.