У интуиции есть своя логика. Гёдель. Теоремы о неполноте

У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств. Так же как и его друг Альберт Эйнштейн, он оспаривал догмы современной науки, и точно так же в его жизни присутствовали война и изгнание.

Жанры: Научпоп, Математика
Серии: -
Всего страниц: 43
ISBN: -
Год издания: 2015
Формат: Полный

У интуиции есть своя логика. Гёдель. Теоремы о неполноте читать онлайн бесплатно

Шрифт
Интервал


Gustavo Ernesto Pineiro

Наука. Величайшие теории: выпуск 17: У интуиции есть своя логика. Гёдель. Теоремы о неполноте.

Пер. с исп. — М: Де Агостини, 2015. — 168 с.

ISSN 2409-0069

© Gustavo Ernesto Pineiro, 2013 (текст)

© RBA Coliecionables S.A., 2012

© ООО «Де Агостини», 2014-2015

Наука. Величайшие теории Выпуск № 17, 2015 Еженедельное издание


Введение

В 1930 году чешский логик Курт Гёдель доказал теорему, сегодня известную как теорема Гёделя о неполноте, которая навсегда изменила понимание математики. По сути, теорема Гёделя утверждает, что если пользоваться точными и достоверными методами рассуждений, методами, исключающими ошибки, то неизбежно будут существовать математические проблемы, которые никогда нельзя будет решить. Всегда найдутся задачи, решение которых будет не под силу этим методам.

До того как Гёдель доказал свою теорему, математики безгранично верили в то, что при достаточном количестве времени, терпения и усилий любая поставленная проблема может быть решена. Например, немецкий математик Давид Гильберт, представивший на Втором Международном математическом конгрессе в Париже в 1900 году знаменитый список из 23 проблем, в своем выдающемся докладе предположил, что эти проблемы определят значительную часть математических исследований в течение XX века.

Проблемы Гильберта очень сложны, и было ясно, что для нахождения решений потребуются десятки лет, что в будущем и подтвердилось. Например, ответ на десятую проблему (в современных терминах: может ли определенный тип уравнений, называемых диофантовыми, всегда быть решен с помощью компьютера?) был найден только в 1970 году. Восьмая про-

блема, известная как гипотеза Римана, не решена и сегодня. Однако ни Гильберт, ни кто-либо из его коллег в далеком 1900 году не сомневались, что рано или поздно будут найдены решения всех проблем. Сам Гильберт выразил эту мысль такими словами: «Мы хотим знать, мы будем знать» ( Wirmiissen wissen, wir werden wissen). Их он распорядился написать и в своей эпитафии — возможно, в качестве послания будущим поколениям или как посмертный вызов Гёделю (Гильберт скончался в 1943 году, через 13 лет после того, как Гёдель сформулировал свою теорему).

Итак, что именно представляет собой математическая проблема? Что мы хотим сказать, когда утверждаем, что проблемы Гильберта были сложными? Может ли считаться сложной задача: «сосчитайте сумму всех чисел от единицы до миллиона»?

Большинство проблем, которые изучает математическая наука, сформулированы как гипотезы. Гипотеза — это утверждение, которое кажется истинным, но его истинность еще не доказана. Знаменитый пример — так называемая гипотеза Гольдбаха, сформулированная прусским математиком Кристианом Гольдбахом в 1742 году:


«Любое четное число, большее двух, может быть выражено в виде суммы двух простых чисел».


Простые числа — это те, которые делятся только на единицу и на само себя; число 1 по техническим причинам не считается простым. Проверим, например, что эта гипотеза справедлива для четных чисел, меньших 12:

4 = 2 + 2

6 = 3 + 3

8 = 3 + 5

10 = 3 + 7

12 = 5 + 7

В гипотезе говорится о четных числах больше двух, поэтому само число 2 оказалось вне списка. Если бы нашелся хотя бы один пример, для которого гипотеза не выполнялась бы, то есть контрпример — четное число, которое нельзя записать в виде суммы двух простых чисел,— то гипотеза оказалась бы ложной. Такого контрпримера еще не нашли. На момент написания этих строк с помощью компьютеров было выяснено, что все четные числа до 10>18 (единица с 18 нулями) могут быть записаны в виде суммы двух простых чисел.

Но как можно подтвердить, что гипотеза истинна? Достаточно ли того, что она проверена для четных чисел, меньших 10>18, для признания ее истинности? Нет, потому что это может быть неверно для числа, непосредственно следующего за 10>18 (то есть 10>18 + 2). А если мы проверим это для 10>18 + 2, достаточно ли этого? Нет, потому что это может быть неверно для 10>18 + 4. И так далее, неважно, сколько эмпирических проверок мы сделаем, мы все равно не сможем проверить все четные числа, поскольку они никогда не заканчиваются и всегда есть бесконечное число новых четных чисел, среди которых может найтись контрпример.

Единственный способ проверить истинность гипотезы — это найти доказательство, то есть такие рассуждения, которые демонстрируют справедливость утверждения сразу для всех возможных случаев. Рассмотрим пример такого доказательства (естественно, мы не можем привести доказательство гипотезы Гольдбаха, поскольку оно до сих пор не найдено). Докажем утверждение: «Все простые числа, большие двух, являются нечетными». Это утверждение затрагивает бесконечное число чисел; однако мы можем охватить их все одним и тем же рассуждением.


Все простые числа, большие двух, являются нечетными. Доказательство: если простое число, большее двух, четно, то оно делится на 2. Но это невозможно, поскольку оно простое, то есть может делиться только на единицу и само на себя. Оно не может быть кратным двум, то есть четным; следовательно, оно нечетное.


Мы можем понимать доказательство как рассуждение, которое потенциально включает в себя бесконечное число частных случаев. Все сложные математические проблемы потенциально включают в себя бесконечное количество объектов, будь то числа, уравнения или другие объекты. По этой причине вычисление суммы всех чисел от единицы до миллиона, при всей своей трудоемкости, не является сложной проблемой в том смысле, который придают этому слову математики, поскольку вычисление предполагает вполне определенное количество операций, и их можно совершить за некоторый промежуток времени, имеющий начало и конец.


Еще от автора Густаво Пиньейро
Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.

Георг Кантор первым среди ученых начал с математической точностью исследовать бесконечность, представлявшую философский интерес. Его новаторский подход к математике воплотился в теории множеств, он сформулировал противоречащие интуиции понятия разных видов бесконечного. До работ, которые были изданы ученым в конце XIX века и стали фундаментальным вкладом в науку, бесконечность, следуя восходившей к Аристотелю научной традиции, понималась как полезная условность. Смелость Кантора стоила ему дорого: его идеи были жестко отвергнуты многими современниками, что, вероятно, послужило причиной его душевной болезни и преждевременной кончины.Прим.


Рекомендуем почитать
Образцовые броненосцы Франции. Часть I. «Жорегибери», 1891–1934 гг.

«Жорегибери» безупречно прослужил 37 лет, первые 20 лет которых приходятся на постоянные учебные плавания и боевые походы. Механизмы ни разу не подводили. Несмотря на неудачи во время испытаний и призывы поменять котлы, за всю службу они ни разу не менялись и не давали повода к нареканиям. Артиллерия, скорость хода также удовлетворяли моряков, хотя и отмечались недостаточность 14-см калибра в качестве среднего и избыточность вертикального бронирования при отсутствии за" щиты лёгкого борта. Корабль не проходил ни одной модернизации.


Броненосцы типа «Редутабль», 1871–1921 гг.

Прогресс артиллерии породил 20-25-см броню, которой оказалось невозможным защитить весь корпус целиком. Надлежало пожертвовать надводным бортом в оконечностях и ограничить бронирование поясом по ватерлинии и центральной батареей, в которой теперь размещалась артиллерия. Протяжённость такой батареи ради компенсации постоянного увеличения веса броневых плит продолжала уменьшаться. Как уже отмечалось, на заложенном в 1865 г. «Осеане» броня составляла 17,7% от водоизмещения, на «Ришельё», заложенном в 1868 г., 19,3%, но до какого значения пропорция вес/защита может эволюционировать?..«Редутабль» достиг 28%, «Девастасьон» 27%, но это благодаря применению стали.


Откровения славянских богов

В книге рассказано о 32 главных славянских божествах, приведены их «живые слова». Читатель узнает об Авсени, Баяне, Вие, Желе, Земуне, Квасуре, Ладе, Макоши, Стрибоге и других представителях славянского языческого пантеона: где и в каких ситуациях с данным божеством можно встретиться, в каком обличье оно обычно предстает перед людьми, к худу или к добру оборачиваются подобные встречи, имеет ли смысл о чем-то просить божество и как это делать, в какой форме, с какими подношениями к нему приходить, как его задобрить, что посулить.


Отступница

Собака душит соседских цыплят, и предстоит принять решение, как с ней быть. Хозяйке тяжело слушать, как соседи, знакомые и даже собственные дети предлагают разные жестокие способы наказания.© zmey-uj.


Физика повседневности. От мыльных пузырей до квантовых технологий

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни.


Есть ли у человека судьба?

В брошюре Н. И. Рязанцева «Есть ли у человека судьба?» говорится, что этот вопрос вызываег иногда горячие споры как среди людей преклонного возраста, так и среди молодежи. Что же такое судьба, можно ли ее избежать, существует ли она на самом деле? В зависимости от того, как тот или иной человек отвечает на подобные вопросы, можно узнать, каков у него взгляд на весь окружающий нас мир, как он оценивает ход и исход различных событий. С верой в судьбу в известной степени связано поведение человека в семье и его отношение к явлениям общественной жизни.


Реальная история Спартака

Что мы знаем о Спартаке? Нет, я сейчас не про футбольный клуб. Гладиатор, который поднял восстание рабов, разбил наголову противостоящие ему легионы и почти взял Рим? И лишь когда он отпустил основную часть своих людей, его смогли одолеть? Или нет?


Горизонты техники для детей, 1963 №2 (9)

Польский ежемесячный научно-популярный журнал для детей.


Блики на портрете

Расшифровка генетического кода, зашита от инфекционных болезней и патент на совершенную фиксацию азота, проникновение в тайну злокачественного роста и извлечение полезных ископаемых из морских вод — неисчислимы сферы познания и практики, где изучение микроорганизма помогает добиваться невиданных и неслыханных результатов… О достижениях микробиологии, о завтрашнем дне этой науки рассказывает академик АМН СССР О. Бароян.


Эмбрионы в глубинах времени

Эта книга предназначена для людей, обладающих общим знанием биологии и интересом к ископаемым остаткам и эволюции. Примечания и ссылки в конце книги могут помочь разъяснить и уточнить разнообразные вопросы, к которым я здесь обращаюсь. Я прошу, чтобы мне простили несколько случайный характер упоминаемых ссылок, поскольку некоторые из затронутых здесь тем очень обширны, и им сопутствует долгая история исследований и плодотворных размышлений.