Математическое мышление - [7]

Шрифт
Интервал

) о том, что, когда ученики с мышлением роста совершают ошибки, активность их мозга более позитивна; при этом у них активизируется больше участков мозга, они уделяют больше внимания ошибкам и исправляют их (Moser, Schroder, Heeter, Moran, & Lee, 2011).

Мне не нужны были другие доказательства важности помощи детям (и взрослым) в развитии мышления роста, в частности в математике. Но недавно мне довелось работать в Париже вместе с членами команды PISA[5] (программы Организации экономического сотрудничества и развития, ОЭСР) над анализом поразительного объема данных о 13 миллионах учащихся из разных стран. Команда PISA проводит международные тесты раз в четыре года, а их результаты публикуются информационными агентствами во всем мире. В США результаты тестов часто вызывают тревогу — и не без оснований. По итогам последнего (на момент написания книги) теста США заняли 36-е место по уровню знаний в математике среди 65 стран — членов ОЭСР (PISA, 2012). Подобно многим другим итогам, этот результат говорит о наличии настоятельной потребности в реформировании преподавания и изучения математики в США. Однако команда PISA занимается не только организацией тестов по математике, но и проводит опросы учащихся с целью сбора информации об их представлениях и убеждениях в отношении математики и своего мышления. Я получила предложение поработать со специалистами PISA, после того как некоторые члены этой команды прошли онлайн-курс, который я проводила прошлым летом. Одним из этих людей был Пабло Сойдо — учтивый испанец, который глубоко анализирует вопросы изучения математики и имеет богатый опыт работы с огромными объемами данных. Пабло — аналитик PISA. Проанализировав имеющиеся данные, мы с ним обнаружили нечто поразительное: именно учащиеся с мышлением роста добиваются самых высоких результатов в математике и опережают других более чем на год изучения математики (рис. 1.2).


Рис. 1.2. Мышление и математика

Источник: PISA, 2012.


Фиксированное мышление (когда ученики считают, что они либо умные, либо нет), которое приводит к пагубным последствиям, свойственно ученикам всех уровней успеваемости. Но самый тяжелый вред оно наносит девочкам с высоким уровнем успеваемости (Dweck, 2006a). Как оказалось, губительна даже уверенность в собственных умственных способностях (одна из установок на данность). Ведь ученики с фиксированным мышлением менее склонны пробовать свои силы в более тяжелой работе или изучении более сложного предмета: они боятся, что совершат ошибку и их уже не будут считать умными. Ученики с мышлением роста берутся за трудную работу и воспринимают ошибки как вызов и стимул прилагать еще больше усилий. Высокая распространенность фиксированного мышления среди девочек — одна из причин того, что они не стремятся изучать технические дисциплины STEM[6]. Это не только ограничивает их жизненные шансы, но и обедняет дисциплины STEM, которые нуждаются в мышлении и видении девушек и женщин (Boaler, 2014a).

В США у многих людей сформировалось фиксированное мышление, в частности из-за того, как родители и учителя хвалят их. Когда ученики получают похвалу за какое-то качество (например, интеллект, если они хорошо справились с каким-то заданием), поначалу они чувствуют себя хорошо. Но когда они позже сталкиваются с неудачами (а они бывают у каждого), для них это означает, что на самом деле они не так уж умны. В ходе одного из недавних исследований было обнаружено, что от того, как родители хвалят детей от момента рождения до трех лет, зависит их мышление через пять лет (Gunderson et al., 2013). Влияние похвалы, которую получают ученики, может быть настолько сильным, что это сразу сказывается на их поведении. В ходе одного из исследований Кэрол Дуэк 400 ученикам пятого класса предложили пройти небольшой легкий тест, с которым почти все справились хорошо. Затем половину детей похвалили за интеллект («Ты такой умный!»), а другую — за усилия при выполнении задания («Ты работал очень усердно!»). После этого детям предложили пройти еще один тест, дав им возможность выбрать между простым вариантом, с которым они могли легко справиться, и более сложным, в котором они могли сделать ошибку. 90% учеников, которых хвалили за усилия, выбрали более трудный тест. Большинство же тех, кого хвалили за интеллект, предпочли легкий вариант (Mueller & Dweck, 1998).

Похвала доставляет удовольствие. Но когда человека хвалят за его личные качества («Ты такой умный!), а не за то, что он сделал («Отличная работа!»), у него создается впечатление, что его способности неизменны. Сказать ученику, что он умный, — значит обречь его на проблемы в будущем. Когда в школе и в жизни ученики терпят неудачу в решении многих задач (что, повторю, вполне естественно), они оценивают себя, решая, умны они или нет. Вместо того чтобы хвалить учеников за умственные способности или другое личное качество, лучше сказать так: «Замечательно, что ты этому научился» или «Ты действительно хорошо все продумал».

В американской системе образования распространено представление, что способности некоторых учеников не позволят им изучать математику определенного уровня сложности. Не так давно я столкнулась с шокирующим фактом: несколько учителей математики в старших классах написали в школьный совет письмо, где утверждали, что некоторые ученики не способны сдать тест по алгебре второго уровня; в частности, что нуждаются в упрощении программы некоторые малообеспеченные ученики из числа нацменьшинств. Письмо было опубликовано в местных газетах, а законодательное собрание штата использовало его в качестве примера, подтверждающего необходимость создания чартерных школ


Еще от автора Джо Боулер
Безграничный разум

Профессор Стэнфорда Джо Боулер опровергает расхожие мифы о врожденных способностях, предопределяющих наш жизненный путь, и раскрывает шесть ключей безграничного потенциала, благодаря которым наш мозг будет развиваться и обновляться каждый день.


Рекомендуем почитать
Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.