Математическое мышление - [5]
В конце обучения водители Black Cab сдают тест по курсу, названный просто и элегантно — «Знание». Если во время поездки в лондонском Black Cab вы спросите водителя об этом курсе, он с удовольствием расскажет вам, насколько труден как сам тест, так и весь процесс обучения. «Знание» известен как один из самых сложных в мире курсов; в среднем кандидаты сдают экзамен с двенадцатого раза.
В первое десятилетие XXI века ученые решили исследовать водителей Black Cab на предмет изменений, которые происходят в их головном мозге в процессе обучения пространственной ориентации. Но они не ожидали настолько впечатляющих результатов. Оказалось, что к концу периода обучения гиппокамп водителей такси существенно увеличился (Maguire et al., 2006; Woollett & Maguire, 2011). Гиппокамп — область мозга, отвечающая за хранение и обработку пространственной информации.
В ходе других исследований ученые сравнили рост мозга водителей Black Cab с ростом мозга водителей лондонских автобусов, которые изучают только простые единичные маршруты. По результатам исследования было установлено, что у этих водителей не наблюдается такого роста головного мозга (Maguire et al., 2006). Это подтвердило вывод ученых о том, что именно необычайно сложное обучение водителей такси становится причиной поразительного роста их головного мозга. В ходе дальнейших исследований ученые обнаружили, что после выхода водителей Black Cab на пенсию их гиппокамп снова уменьшается в объеме (Woollett & Maguire, 2011).
Многочисленные исследования с участием водителей Black Cab (Maguire et al., 2006; Woollett & Maguire, 2011) продемонстрировали уровень гибкости, или пластичности головного мозга, поразивший ученых. Ранее они считали, что такое невозможно. Все эти открытия привели к тому, что научный мир изменил свое мнение об обучении, способностях и возможностях изменений и роста мозга.
Примерно в то же время, когда проводились исследования с участием водителей Black Cab, произошло событие, которое еще больше потрясло научный мир. У девятилетней Кэмерон Мотт были припадки, которые медики не могли контролировать. Лечащий врач девочки Джордж Джелло предложил радикальную меру. Он пришел к выводу, что необходимо удалить половину ее головного мозга: все левое полушарие. Это была революционная операция, которая прошла успешно. Несколько дней после операции Кэмерон была парализована. Врачи считали, что она будет оставаться в таком состоянии много лет. Но прошло несколько недель, а потом и месяцев — и девочка поразила врачей восстановлением функций. Это могло значить только одно: в правом полушарии головного мозга сформировались связи, необходимые для выполнения функций левого полушария. Врачи отнесли это на счет невероятной пластичности головного мозга и могли объяснить случившееся только тем, что на самом деле произошла регенерация мозга девочки. Процесс формирования нового мозга проходил быстрее, чем врачи могли себе представить. Сейчас Кэмерон бегает и играет вместе с другими детьми, а легкая хромота — единственный признак утраты значительной части мозга[4].
Новые данные о том, что головной мозг может расти, адаптироваться и меняться, потрясли научный мир и повлекли множество новых исследований и обучения с использованием новых технологий и оборудования для сканирования мозга. В ходе исследования, крайне интересного для работников сферы образования, специалисты Национального института психического здоровья давали участникам упражнение, над которым те должны были работать по 10 минут каждый день на протяжении трех недель. Затем исследователи сравнили мозг тех, кто выполнял упражнение, с мозгом тех, кто этого не делал. Выяснилось, что в головном мозге участников исследования, которые работали над упражнением, произошли структурные изменения. Он «перепрограммировался» и увеличился в объеме под воздействием 10-минутного задания, которое они выполняли каждый день на протяжении 15 дней (Karni et al., 1998). Эти результаты должны подтолкнуть педагогов к отказу от устоявшихся представлений о мозге и обучении, которые сейчас распространены в школе: мол, ученики бывают умными и глупыми, сообразительными и бестолковыми. Если мозг способен измениться за три недели, представьте себе, что может произойти за год изучения математики, если ученики получают нужный материал по этому предмету и позитивные отклики о своих потенциале и способностях. В главе 5 мы поговорим о структуре лучших математических задач, над которыми должны работать ученики, чтобы их мозг развивался.
Новые данные, полученные по результатам исследований головного мозга, свидетельствуют: при грамотном преподавании и наличии толковой обратной связи каждый ученик может успешно освоить математику и добиться самого высокого уровня успеваемости в школе. У некоторых детей действительно есть специфические образовательные потребности, затрудняющие изучение математики. Но подавляющему большинству (95%) доступны все уровни школьного курса. Родители и учителя должны знать это. Когда я рассказываю об этих результатах исследований во время семинаров и презентаций, это вдохновляет и стимулирует большинство учителей. Но не всех. Недавно я работала с группой учителей, и у одного преподавателя математики из средней школы эта идея вызвала явное беспокойство. Он сказал: «Вы же не будете утверждать, что любой шестиклассник моей школы сможет изучать дифференциальное и интегральное исчисление в двенадцатом классе?» Я ответила: «Буду». Тот учитель был по-настоящему встревожен этой идеей — хотя, надо отдать ему должное, он не отверг ее сразу. Некоторым трудно принять тот факт, что кто угодно может освоить математику на достаточно высоком уровне, особенно если они много лет решали, кто может заниматься ею, а кто нет, и обучали детей в соответствии с этим убеждением. Безусловно, с самого рождения многие дети получили достаточно впечатлений и сигналов в отношении математики, из-за которых оказались в числе отстающих и могли дойти до шестого класса с меньшим объемом математических знаний по сравнению с другими учениками. Но это не значит, что такие ученики не могут ускорить свое развитие и выйти на более высокий уровень. Они способны сделать это при условии качественного преподавания и поддержки, которой заслуживают все дети.
«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.
Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..
Как помочь ребенку полюбить математику? Эта книга поможет вам и вашим детям взглянуть по-новому на изучение математики, закрыть пробелы в знаниях и превратить учёбу в удовольствие.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.