Математическое мышление - [5]
В конце обучения водители Black Cab сдают тест по курсу, названный просто и элегантно — «Знание». Если во время поездки в лондонском Black Cab вы спросите водителя об этом курсе, он с удовольствием расскажет вам, насколько труден как сам тест, так и весь процесс обучения. «Знание» известен как один из самых сложных в мире курсов; в среднем кандидаты сдают экзамен с двенадцатого раза.
В первое десятилетие XXI века ученые решили исследовать водителей Black Cab на предмет изменений, которые происходят в их головном мозге в процессе обучения пространственной ориентации. Но они не ожидали настолько впечатляющих результатов. Оказалось, что к концу периода обучения гиппокамп водителей такси существенно увеличился (Maguire et al., 2006; Woollett & Maguire, 2011). Гиппокамп — область мозга, отвечающая за хранение и обработку пространственной информации.
В ходе других исследований ученые сравнили рост мозга водителей Black Cab с ростом мозга водителей лондонских автобусов, которые изучают только простые единичные маршруты. По результатам исследования было установлено, что у этих водителей не наблюдается такого роста головного мозга (Maguire et al., 2006). Это подтвердило вывод ученых о том, что именно необычайно сложное обучение водителей такси становится причиной поразительного роста их головного мозга. В ходе дальнейших исследований ученые обнаружили, что после выхода водителей Black Cab на пенсию их гиппокамп снова уменьшается в объеме (Woollett & Maguire, 2011).
Многочисленные исследования с участием водителей Black Cab (Maguire et al., 2006; Woollett & Maguire, 2011) продемонстрировали уровень гибкости, или пластичности головного мозга, поразивший ученых. Ранее они считали, что такое невозможно. Все эти открытия привели к тому, что научный мир изменил свое мнение об обучении, способностях и возможностях изменений и роста мозга.
Примерно в то же время, когда проводились исследования с участием водителей Black Cab, произошло событие, которое еще больше потрясло научный мир. У девятилетней Кэмерон Мотт были припадки, которые медики не могли контролировать. Лечащий врач девочки Джордж Джелло предложил радикальную меру. Он пришел к выводу, что необходимо удалить половину ее головного мозга: все левое полушарие. Это была революционная операция, которая прошла успешно. Несколько дней после операции Кэмерон была парализована. Врачи считали, что она будет оставаться в таком состоянии много лет. Но прошло несколько недель, а потом и месяцев — и девочка поразила врачей восстановлением функций. Это могло значить только одно: в правом полушарии головного мозга сформировались связи, необходимые для выполнения функций левого полушария. Врачи отнесли это на счет невероятной пластичности головного мозга и могли объяснить случившееся только тем, что на самом деле произошла регенерация мозга девочки. Процесс формирования нового мозга проходил быстрее, чем врачи могли себе представить. Сейчас Кэмерон бегает и играет вместе с другими детьми, а легкая хромота — единственный признак утраты значительной части мозга[4].
Новые данные о том, что головной мозг может расти, адаптироваться и меняться, потрясли научный мир и повлекли множество новых исследований и обучения с использованием новых технологий и оборудования для сканирования мозга. В ходе исследования, крайне интересного для работников сферы образования, специалисты Национального института психического здоровья давали участникам упражнение, над которым те должны были работать по 10 минут каждый день на протяжении трех недель. Затем исследователи сравнили мозг тех, кто выполнял упражнение, с мозгом тех, кто этого не делал. Выяснилось, что в головном мозге участников исследования, которые работали над упражнением, произошли структурные изменения. Он «перепрограммировался» и увеличился в объеме под воздействием 10-минутного задания, которое они выполняли каждый день на протяжении 15 дней (Karni et al., 1998). Эти результаты должны подтолкнуть педагогов к отказу от устоявшихся представлений о мозге и обучении, которые сейчас распространены в школе: мол, ученики бывают умными и глупыми, сообразительными и бестолковыми. Если мозг способен измениться за три недели, представьте себе, что может произойти за год изучения математики, если ученики получают нужный материал по этому предмету и позитивные отклики о своих потенциале и способностях. В главе 5 мы поговорим о структуре лучших математических задач, над которыми должны работать ученики, чтобы их мозг развивался.
Новые данные, полученные по результатам исследований головного мозга, свидетельствуют: при грамотном преподавании и наличии толковой обратной связи каждый ученик может успешно освоить математику и добиться самого высокого уровня успеваемости в школе. У некоторых детей действительно есть специфические образовательные потребности, затрудняющие изучение математики. Но подавляющему большинству (95%) доступны все уровни школьного курса. Родители и учителя должны знать это. Когда я рассказываю об этих результатах исследований во время семинаров и презентаций, это вдохновляет и стимулирует большинство учителей. Но не всех. Недавно я работала с группой учителей, и у одного преподавателя математики из средней школы эта идея вызвала явное беспокойство. Он сказал: «Вы же не будете утверждать, что любой шестиклассник моей школы сможет изучать дифференциальное и интегральное исчисление в двенадцатом классе?» Я ответила: «Буду». Тот учитель был по-настоящему встревожен этой идеей — хотя, надо отдать ему должное, он не отверг ее сразу. Некоторым трудно принять тот факт, что кто угодно может освоить математику на достаточно высоком уровне, особенно если они много лет решали, кто может заниматься ею, а кто нет, и обучали детей в соответствии с этим убеждением. Безусловно, с самого рождения многие дети получили достаточно впечатлений и сигналов в отношении математики, из-за которых оказались в числе отстающих и могли дойти до шестого класса с меньшим объемом математических знаний по сравнению с другими учениками. Но это не значит, что такие ученики не могут ускорить свое развитие и выйти на более высокий уровень. Они способны сделать это при условии качественного преподавания и поддержки, которой заслуживают все дети.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.