Математическое мышление - [2]

Шрифт
Интервал

способности к математике!» Эта «утопия» реализуется на практике в учебных классах по всему миру. Если вы последуете представленным в данной книге рекомендациям, то и в вашем классе это вполне может произойти.


Кэрол Дуэк,

профессор психологии

и автор книги «Гибкое сознание»[2]

Сила мышления

Я хорошо помню тот осенний день, когда я сидела в кабинете декана в ожидании встречи, которая оказалась очень важной. Накануне я вернулась в Стэнфордский университет из Англии, где работала профессором математики как стипендиат Фонда имени Марии Кюри. Я привыкала к переходу от серого облачного неба, которое было моим неизменным спутником на протяжении трех лет пребывания на побережье Сассекса в Англии, к солнечному свету, почти всегда заливавшему кампус Стэнфорда. В тот день я вошла в кабинет декана с предвкушением: мне предстояло впервые встретиться с Кэрол Дуэк. Я немного волновалась перед встречей со знаменитым исследователем, книги которого коренным образом изменили жизнь людей на разных континентах и работа которого побудила правительства, школы, родителей и даже ведущие спортивные команды изменить подход к жизни и обучению.

Кэрол и члены ее исследовательской команды много лет собирали данные, подтверждавшие очевидное: у каждого человека свой тип мышления, внутреннее убеждение по поводу обучения (Dweck, 2006b). Люди с мышлением роста (установкой на рост) считают, что умственные способности можно развить упорным трудом, а люди с фиксированным мышлением (установкой на данность) убеждены, что можно что-то изучить, но нельзя изменить базовый уровень интеллекта. Тип мышления крайне важен: результаты исследований свидетельствуют, что от него зависит поведение людей в процессе обучения, а также их результаты. Когда ученики меняют установки и начинают верить, что могут подняться на более высокий уровень, они меняют путь обучения (Blackwell, Trzesniewski, & Dweck, 2007) и добиваются более высоких результатов.

В тот день я спросила Кэрол, хотела бы она поработать с учителями математики и учениками. Ведь иногда очень полезно воздействовать на мышление учеников, а учителя имеют такую возможность постоянно. Кэрол была воодушевлена и подтвердила, что математика — предмет, который больше всего нуждается в изменении мышления. Это была первая из множества наших приятных бесед; в следующие четыре года мы много работали вместе. Сейчас мы трудимся над совместными исследовательскими проектами с участием учителей, знакомим их со своими идеями и результатами исследований в рамках семинаров. Исследования мышления и математики, которыми я занималась в последние годы, помогли мне в полной мере понять необходимость развития мышления учеников в контексте математики, а не в целом. Ученики зачастую так не любят этот предмет, что у них формируются установки на рост в отношении чего угодно, но только не математики. Чтобы изменить такие губительные убеждения, ученикам необходимо развить математическое мышление. И эта книга научит вас, как помочь им.

Свойственное многим людям фиксированное мышление в отношении математики в сочетании с другими негативными представлениями о ней ведет к губительным последствиям. Именно поэтому я хочу поделиться в этой книге новыми идеями о математике и обучении. Не так давно я высказала некоторые из них во время онлайн-курса для учителей и родителей (курсы такого типа называют MOOC[3]), и результаты превзошли все мои ожидания (Stanford Center for Professional Development, без даты).

На курс записались более сорока тысяч слушателей, среди которых были учителя всех классов и родители. В конце курса 95% присутствовавших заявили, что благодаря новым знаниям изменят свои методы преподавания или помощи своим детям. Более 65% слушателей решили продолжить обучение (обычно на таких курсах остаются процентов пять).

Прочтя отзывы всех участников, я поняла, что математика для многих оказалась психологической травмой и что эту травму подпитывают ошибочные убеждения по поводу самой науки и своих умственных способностей. В сложности математики убеждены многие.

Впервые о травмирующем воздействии математики я узнала после публикации моей первой книги для родителей и учителей под названием «При чем здесь математика» в США и «Слон в классной комнате» в Великобритании (Boaler, 2015a). В ней подробно описаны изменения, которые необходимо внести в методы преподавания и воспитания, чтобы сделать математику более увлекательной и доступной. После выхода этого пособия меня начали приглашать на многочисленные радиошоу по обе стороны Атлантики, чтобы обсудить тему изучения математики. Это были разные программы: от утренних шоу до серьезного обсуждения с весьма вдумчивым ведущим PBS и короткого выступления во время популярного британского радиошоу под названием «Час женщин». Беседы с радиоведущими — крайне интересный опыт. Сначала я всегда рассказывала об изменениях, которые нам нужны, подчеркивая, что математика травмирует многих. Это как будто помогало ведущим расслабиться, открыться и поделиться своими историями о том же самом. Многие интервью превращались в подобие сеансов психотерапии: очень квалифицированные и компетентные специалисты говорили о своих страданиях при изучении математики, причиной которых обычно было то, что сказал или сделал учитель. Я до сих пор помню, как Китти Данн из Висконсина рассказала, что название учебника по алгебре навсегда связалось у нее с негативными эмоциями. Радиоведущая BBC Джейн Гарви (поразительная женщина, которой я восхищаюсь) поведала, что боялась брать у меня интервью и что она уже рассказала двум дочерям о своей ужасной успеваемости по математике в школе (а этого ни в коем случае нельзя делать — но об этом чуть позже). Такая сила негативных эмоций по поводу математики не редкость. Эта дисциплина больше, чем любая другая, сокрушает дух учеников так, что даже взрослыми они не могут забыть свои неудачи. Многие ученики решают, что не способны усвоить математику, и питают отвращение к ней на всю жизнь.


Еще от автора Джо Боулер
Безграничный разум

Профессор Стэнфорда Джо Боулер опровергает расхожие мифы о врожденных способностях, предопределяющих наш жизненный путь, и раскрывает шесть ключей безграничного потенциала, благодаря которым наш мозг будет развиваться и обновляться каждый день.


Рекомендуем почитать
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.


Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.