Математическое мышление - [6]

Шрифт
Интервал

Меня часто спрашивают, действительно ли я думаю, что всем от рождения дан одинаковый мозг. Нет, я такого не утверждаю. Я говорю о том, что врожденные особенности детей далеко не так важны, как рост их мозга на протяжении всей жизни. Многие твердо убеждены, что наш потенциал зависит от того, что нам дано от рождения, и приводят в пример известных людей, которых считают гениями: Альберта Эйнштейна или Людвига ван Бетховена. Но сейчас ученым известно, что опыт обучения, который мы накапливаем с рождения, затмевает любые врожденные особенности мозга (Wexler in Thompson, 2014). Синапсы возбуждаются в головном мозге каждую секунду, и ученики, которые росли в стимулирующей среде и получали сигналы о мышлении роста, могут всё. Особенности мозга порой с самого начала дают некоторым людям более благоприятные условия, но лишь немногим природой дано то, что на всю жизнь обеспечит им преимущество. Именно те люди, которых принято считать гениальными от рождения, часто подчеркивают, как упорно они трудились и сколько ошибок совершили. Эйнштейн — пожалуй, самый известный ученый из тех, кого считают гениями, — научился читать только в девять лет и часто говорил, что его достижения рождены ошибками, которые он совершил, и упорством, которое он проявлял. Он относился к работе и жизни как человек с мышлением роста. Многие научные данные подтверждают, что основой успехов или неудач становятся не врожденные умственные способности, а подход к жизни, обратная связь и имеющиеся возможности обучения. Самые благоприятные условия формируются тогда, когда ученики верят в себя. В школе слишком многие сталкиваются с трудностями в изучении математики, получая такие сигналы о своем потенциале, которые заставляют их поверить в то, что они хуже остальных или у них нет таких способностей, как у других. Представленная в данной книге информация поможет и учителям, и родителям внушить детям уверенность в себе, которая им необходима, и вывести их на путь, который приведет их к математическому мышлению, каким бы ни был их предыдущий опыт. Этот путь подразумевает изменение отношения учеников к себе и смену подхода к изучению математики.

Да, мозг у всех разный. Но, в отличие от многих, я считаю, что математического склада ума или математического таланта не существует. Никто не рождается ни со знанием математики, ни без способности изучать ее. К сожалению, идеи об одаренности очень живучи. Не так давно исследователи проанализировали, насколько преподаватели высших учебных заведений убеждены в том, что для изучения их предметов (тридцать в общей сложности) необходима одаренность, и пришли к поразительным выводам (Leslie, Cimpian, Meyer, & Freeland, 2015). Именно преподаватели математики более всех убеждены в том, что их предмет доступен не каждому. Кроме того, исследователи пришли к выводу, что чем больше в той или иной области ценится одаренность, тем меньше в ней женщин со степенью доктора наук, а также что есть корреляция между убеждениями, свойственными соответствующей области, и представленностью женщин в ней. Меньшее число женщин в тех областях, где сильна вера в природную одаренность, объясняется тем, что до сих пор широко распространены стереотипы о том, кто действительно может заниматься математикой (подробнее об этом см. в главе 6). Нам стоит придерживаться более справедливых и просвещенных взглядов на изучение математики в своих беседах и занятиях с учениками. Работа с учениками должна опираться на новую науку о мозге; нам стоит внушать всем мысль о том, что освоить математику может каждый, а не только тот, кого считают одаренным. Это откроет путь к иному будущему — в котором психологическая травма в связи с изучением математики останется в прошлом, а ученики из разных слоев общества получат доступ к возможностям качественного ее изучения.

В ходе исследований Кэрол Дуэк и ее коллег было установлено, что примерно у 40% детей отмечается пагубное фиксированное мышление и они убеждены, будто интеллект — дар, который «либо есть, либо нет». 40% учеников свойственно мышление роста, а оставшиеся 20% демонстрируют признаки обоих типов мышления (Dweck, 2006b). Ученики с фиксированным мышлением чаще легко сдаются, а ученики с мышлением роста продолжают трудиться, даже если им приходится постоянно выполнять нелегкую работу, демонстрируя при этом качество, которое Анджела Дакворт называет твердостью характера (Duckworth & Quinn, 2009). В ходе одного исследования учеников седьмого класса был проведен опрос для определения типа мышления. Потом исследователи на протяжении двух лет отслеживали успеваемость этих учеников по математике. Результаты оказались впечатляющими: успеваемость учеников с фиксированным мышлением оставалась на прежнем уровне, а у учеников с мышлением роста она постоянно повышалась (Blackwell et al., 2007; рис. 1.1).


Рис. 1.1. Ученики с мышлением роста опережают в математике учеников с фиксированным мышлением

Источник: Blackwell et al., 2007.


В ходе других исследований ученые показали, что фиксированное мышление у детей (и взрослых) может трансформироваться в мышление роста. Когда это происходит, их подход к обучению становится гораздо более позитивным и успешным (Blackwell et al., 2007). Кроме того, получены новые данные (подробнее см.


Еще от автора Джо Боулер
Безграничный разум

Профессор Стэнфорда Джо Боулер опровергает расхожие мифы о врожденных способностях, предопределяющих наш жизненный путь, и раскрывает шесть ключей безграничного потенциала, благодаря которым наш мозг будет развиваться и обновляться каждый день.


Рекомендуем почитать
Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.


Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление

Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.


Сборник задач по математике с решениями для поступающих в вузы

Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.


Пятьсот двадцать головоломок

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.


Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.