Математическое мышление - [8]

Шрифт
Интервал

(Noguchi, 2012). Письмо вызвало всеобщий шок, но, к сожалению, мнение о том, что некоторые ученики не способны освоить высшую математику, свойственно многим. Такой ограниченный и расистский подход может принимать разные формы и порой применяется с искренней заботой об учениках. Ведь многие считают, что дети готовы к изучению определенных математических тем только на определенной стадии своего развития. Но на самом деле готовность учеников зависит от накопленных ими практических знаний, а если они не готовы к изучению тех или иных тем, то могут подготовиться, получив необходимый опыт и поддержку и развив мышление роста. Не существует предопределенных темпов изучения математики, поэтому нельзя утверждать, что она недоступна тем, кто не достиг какого-то уровня возрастной или эмоциональной зрелости. Могут быть не готовы разве что те, кто пока не освоил необходимые базовые понятия. Остальное сформируется в процессе обучения.

Для многих из нас понимание важности математического мышления и формирование концепции и стратегий изменения мышления учеников подразумевает более тщательный подход к собственному обучению и отношениям с математикой. Многие учителя начальной школы, с которыми я работала (некоторые из них слушали мой онлайн-курс), рассказывали, что идеи о мозге, потенциале и мышлении роста, с которыми я их познакомила, полностью изменили их жизнь. Под влиянием этих идей у них сформировалось мышление роста в отношении математики, они начали заниматься ею с уверенностью и энтузиазмом и прививать такое отношение своим ученикам. Это особенно важно для учителей начальной школы, поскольку на определенном этапе многим из них говорили, что они не способны освоить математику или что эта дисциплина «не для них». Многие преподаватели математики сами боятся этой дисциплины. Результаты исследований, о которых я им рассказала, помогли им избавиться от страха и встать на другой путь. В ходе важного исследования Сайен Бейлок и ее коллеги пришли к выводу о наличии зависимости между уровнем негативных эмоций, которые учителя начальной школы испытывают по отношению к математике, и уровнем успеваемости девочек из их класса, но не мальчиков (Beilock, Gunderson, Ramirez, & Levine, 2009). Вероятно, это гендерное различие объясняется тем, что девочки отождествляют себя с учительницами, особенно в начальной школе. Они быстро подхватывают негативные сигналы в отношении математики, которые учителя зачастую подают из добрых побуждений, например: «Я знаю, что это очень трудно, но давай попробуем» или «Я никогда не любила математику». Кроме того, это исследование подчеркивает связь между сигналами, которые подают учителя, и успеваемостью их учеников.

Каков бы ни был уровень вашего мышления и знаний в этой области, я надеюсь, что представленные в этой книге данные и идеи помогут вам и вашим ученикам воспринимать математику (на любом уровне) как предмет, доступный для понимания и приносящий истинное удовольствие. В главе 2, главе 3, главе 4, главе 5, главе 6, главе 7 и главе 8 приведено много стратегий формирования мышления роста на занятиях математикой в школе и дома, которые я собрала за долгие годы исследований и практической работы в школах. Они помогут вам дать ученикам такой опыт изучения математики, который позволит им развить сильное математическое мышление.

Глава 2. Сила ошибок и трудностей

Я начала проводить семинары о преподавании математики с ориентацией на мышление роста вместе со студентами магистратуры из Стэнфорда (Сарой Селлинг, Кэти Сан и Холли Поуп), после того как директора калифорнийских школ рассказали мне о том, что их учителя прочли книги Кэрол Дуэк и полностью поддерживают изложенные там идеи, но не знают, что все это значит для преподавания математики. Первый семинар состоялся в кампусе Стэнфордского университета, в светлом и просторном центре Ли Ка-Шинга. Одна из самых ярких фраз Кэрол Дуэк поразила учителей: «Каждый раз, когда ученик делает ошибку в математической задаче, у него появляется новый синапс». Все мысленно ахнули. Ведь речь шла о силе и ценности ошибок — хотя большинство учеников считают, что ошибки означают отсутствие у них математических способностей или, того хуже, отсутствие интеллекта. Многие учителя годами говорили ученикам, как полезны ошибки: они свидетельствуют о том, что мы учимся. Но новые данные о мозге и ошибках указывают на нечто гораздо более важное.

Психолог Джейсон Мозер со своей группой изучил нейронные процессы в мозге человека в момент совершения ошибки (Moser et al., 2011). Они обнаружили нечто удивительное. Мозг может отреагировать на ошибку двумя способами. Ответная реакция первого типа под названием «вызванный ошибкой негативный импульс» (error-related negativity, ERN) — повышенная электрическая активность при конфликте между правильным ответом и неверным. И такая активность возникает независимо от того, знает ли человек об ошибке. Ответная реакция второго типа под названием «вызванный ошибкой позитивный импульс» (positivity error, Pe) — сигнал, отражающий осознанное внимание к ошибкам. Такая реакция имеет место, когда человек знает, что совершил ошибку, и уделяет ей осознанное внимание.


Еще от автора Джо Боулер
Безграничный разум

Профессор Стэнфорда Джо Боулер опровергает расхожие мифы о врожденных способностях, предопределяющих наш жизненный путь, и раскрывает шесть ключей безграничного потенциала, благодаря которым наш мозг будет развиваться и обновляться каждый день.


Рекомендуем почитать
Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.