Математическое мышление - [9]

Шрифт
Интервал

Когда я сказала учителям, что ошибки активируют мозг и стимулируют его рост, они отреагировали так: «Конечно, только при условии, что ученики исправляют ошибку, а потом продолжают решать задачу». Но на самом деле это не так. Результаты исследований свидетельствуют о том, что мозг активизируется независимо от того, знаем ли мы об ошибке. Когда учителя спрашивают меня, как это возможно, я говорю, что пока лучшее объяснение таково: мозг активизируется и растет, когда мы делаем ошибки, ведь в это время он напряженно работает.

В ходе исследования Мозер с коллегами проанализировали мышление людей и сопоставили разные его типы с реакцией ERN и Pe при ошибочных ответах на поставленные вопросы. Ученые сделали два важных вывода. Во-первых, электрическая активность мозга учеников в случае реакций ERN и Pe была выше, когда они совершали ошибки, чем когда давали правильные ответы. Во-вторых, в случае ошибок активность мозга участников с мышлением роста оказалась выше активности мозга участников с фиксированным мышлением.

Очень важно то, что наш мозг реагирует на ошибки повышенной активностью. Подробнее об этом чуть позже.

Исследование также показало, что люди с мышлением роста лучше осведомлены об ошибках, чем люди с фиксированным мышлением, поэтому чаще исправляют свои промахи. Это согласуется с результатами других исследований (Mangels, Butterfield, Lamb, Good, & Dweck, 2006), продемонстрировавших, что у учеников с мышлением роста проявляются усиленная реакция мозга и внимание к ошибкам. Все ученики реагировали на ошибки возбуждением синапсов, но у людей с мышлением роста мозг чаще начинал активную работу, показывая осведомленность об ошибке.

Результаты неврологических исследований головного мозга и ошибок крайне важны для нас, учителей математики и родителей. Они свидетельствуют, что ошибки полезны. Когда мы их совершаем (даже если сами того не осознаем), наш мозг активизируется и растет; вдобавок мы учимся. Это важно, поскольку дети и взрослые во всем мире часто испытывают крайне негативные эмоции, когда ошибаются в решении математических задач: ведь они воспитывались в культуре достижений (см. Boaler, 2014b), где ошибки не ценят или того хуже — за них наказывают. Увы, многие задания для работы в классе составлены так, чтобы ученики смогли без проблем выполнить их правильно. Но на самом деле необходимо, чтобы ученики совершали ошибки. Чуть ниже представлены математические задачи, которые увлекают учеников и способствуют росту их мозга, и сигналы, которые должны подавать при этом учителя и родители.

В странах с самым высоким уровнем знаний по математике (например, в Китае) подход к ошибкам совсем иной. Недавно я наблюдала за уроком математики в Шанхае — китайском городе, где ученики демонстрируют самые высокие результаты в стране и в мире. Учитель давал ученикам серьезные концептуальные задачи, а затем устраивал опрос. Пока ученики с удовольствием рассказывали о проделанной работе, переводчик шепнул мне, что учитель выбирает детей, которые сделали ошибки. Те с гордостью рассказывали об ошибках, поскольку учитель придает им большое значение. В главе 9 дано описание короткого и очень интересного эпизода одного из уроков в Китае.

Различные научные исследования не только демонстрируют ценность ошибок для каждого, но и показывают, что ученикам с мышлением роста свойственна более высокая активность мозга, связанная с обнаружением ошибок, чем ученикам с фиксированным мышлением. И именно поэтому мышление роста так полезно для изучения математики и других предметов.

Исследование Мозера, которое показало, что в случае ошибок у участников с мышлением роста активность мозга выше, чем у участников с фиксированным мышлением, позволяет сделать еще один важный вывод. Выходит, что наши представления о себе (в частности, вера в свои силы) меняют работу мозга. Если мы верим, что можем учиться и ошибки важны, наш мозг развивается активнее, когда мы их совершаем. Вот почему нужно верить в себя, особенно когда перед нами встают сложные задачи.

Ошибки в нашей жизни

Исследования успешных и неудачливых бизнесменов дали неожиданный результат: их характеризует количество не успехов, а ошибок. Да, более успешные люди совершают больше ошибок. Starbucks — одна из самых именитых компаний в мире, а ее основатель Говард Шульц — один из самых успешных предпринимателей современности. Когда он создал компанию, позже ставшую Starbucks, он использовал в качестве модели итальянские кафе. В США в то время было не так уж много кафе, а Шульц восхищался итальянскими заведениями. В первых кафе Шульца кофе подавали официанты в бабочках, в которых им было не по себе; пока клиенты пили кофе, в зале звучала оперная музыка. В США клиенты не очень хорошо восприняли этот антураж, и команда Шульца начала все с нуля и совершила еще много ошибок, прежде чем в итоге был создан бренд Starbucks.

Журналист New York Times Питер Симс написал много работ о роли ошибок в формировании творческого предпринимательского мышления (Sims, 2011). Он отмечает: «Несовершенство — часть любого творческого процесса и жизни, хотя почему-то мы живем в культуре, для которой характерен парализующий страх перед неудачей, мешающий действовать и усиливающий перфекционизм. Именно такой образ мыслей лишает веры в себя, если человек стремится стать более изобретательным и предприимчивым».


Еще от автора Джо Боулер
Безграничный разум

Профессор Стэнфорда Джо Боулер опровергает расхожие мифы о врожденных способностях, предопределяющих наш жизненный путь, и раскрывает шесть ключей безграничного потенциала, благодаря которым наш мозг будет развиваться и обновляться каждый день.


Рекомендуем почитать
Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.