Математическое мышление - [10]

Шрифт
Интервал

Кроме того, Питер Симс перечисляет основные привычки успешных людей, утверждая, что все они делают следующее.

• Чувствуют себя комфортно, когда ошибаются.

• Пытаются реализовать на первый взгляд безумные идеи.

• Открыты разным типам опыта.

• Играют с идеями, не давая оценок.

• Готовы выступить против традиционных представлений.

• Не сдаются перед лицом трудностей.


В изучении математики эти привычки не менее важны, чем в жизни. Но, как это ни удивительно, они не применяются на уроках математики и во время выполнения домашних заданий по этому предмету. Необходимо, чтобы ученики чувствовали себя свободно, смело пробовали разные идеи и не боялись ошибок, придерживались открытого подхода к изучению математики и были готовы играть с задачами, пытаясь реализовать «на первый взгляд безумные идеи» (см. главу 5). Нужно, чтобы ученики выступили против традиционных представлений, отбросив идею о том, что одни люди могут заниматься математикой, а другие нет. Безусловно, необходимо, чтобы ученики не сдавались, когда задание по математике оказывается трудным и они не сразу находят решение.

Как изменить отношение к ошибкам?

Один из самых эффективных шагов, которые могут предпринять учителя и родители, — изменение обратной связи об ошибках и неправильных ответах в математике. Недавно я получила очень трогательное видео от учителя, который прошел мой онлайн-курс и начал учебный год с того, что рассказал на занятиях для отстающих учеников о важности и ценности ошибок. За год дети полностью изменились; они сделали выводы из прошлых неудач и снова приступили к изучению математики, но уже с положительным настроем. Этот учитель прислал видео, где ученики рассказывают о том, что сигнал о росте мозга под воздействием ошибок изменил для них все. По словам этих детей, раньше они считали себя неудачниками, и это мешало им добиваться успеха. В работе новый учитель использовал такие сигналы и методы преподавания, под влиянием которых они оставили в прошлом многолетний страх перед математикой и начали изучать этот предмет с новым рвением. Когда мы говорим ученикам, что ошибки полезны, они как будто освобождаются от тяжкого груза.

В рамках своего онлайн-курса для учителей и родителей я поделилась со слушателями новой информацией об ошибках и поставила им интересную задачу: придумать игру, которая изменит отношение учеников к ошибкам в классе и дома. Одна учительница рассказала о своем методе: в самом начале урока она просит учеников смять лист бумаги и бросить его в сторону доски с тем чувством, которое они испытывают, когда делают ошибки в заданиях по математике. Ученики дают выход своим эмоциям (обычно разочарованию), швыряя смятые листы бумаги в доску. Затем учительница предлагает детям поднять листы, разровнять их и цветными маркерами разрисовать образовавшиеся на бумаге складки, которые олицетворяют рост их мозга. И затем хранить эти листы в своих папках весь учебный год как напоминание о важности ошибок.

Несколько лет назад я начала работать с Ким Холлиуэлл — великолепной учительницей, входящей в состав группы из объединенного школьного округа Виста, с которой я тесно сотрудничала на протяжении двух лет. В 2015 году я побывала в классе Ким и увидела, что все стены увешаны замечательными рисунками, на которых ученики изобразили свой мозг и написали позитивные высказывания о росте мозга и об ошибках. Ким рассказала мне, что попросила учеников выбрать любимые высказывания о росте мозга из всех, которые они вместе просмотрели, и написать их на изображениях своего мозга.

Еще одна стратегия, подчеркивающая важность ошибок, — предложить ученикам сдать свою работу в любом виде, даже тест (хотя чем реже мы проверяем уровень знаний учеников, тем лучше; подробнее см. главу 8). После этого учителя выделяют «любимые ошибки». Они должны объяснить ученикам, что ищут свои самые частые ошибки (серьезные, а не числовые погрешности). Затем дети могут рассказать об этих ошибках на уроке и начать в классе обсуждение: почему это ошибки и чем они обусловлены. В этот момент целесообразно подкрепить важные сигналы — в частности, сказать ученику, что ошибка принесла ему пользу, поскольку в этот момент он напряженно размышлял, что привело к активизации и росту его мозга. Кроме того, полезно рассказывать об ошибках и обсуждать их. Если один ученик делает ошибку, мы знаем, что другие тоже могут ее допустить; поэтому возможность проанализировать ошибку приносит пользу всем.

Если ставить ученикам оценки за выполнение заданий по математике (бесполезная практика, о которой мы поговорим позже), а также снижать баллы за ошибки, они получают крайне негативный сигнал об ошибках и изучении математики. Чтобы развивать у учеников мышление роста и давать им позитивную обратную связь, учителя должны свести к минимуму тестирования и оценку уровня знаний учеников (см. главу 8). Если учителя продолжают проводить тесты и оценивать уровень знаний учеников, им следует ставить такие же (если не более высокие) оценки за ошибки. Это будет хороший сигнал о том, что ошибка — отличная возможность для обучения и роста мозга.


Еще от автора Джо Боулер
Безграничный разум

Профессор Стэнфорда Джо Боулер опровергает расхожие мифы о врожденных способностях, предопределяющих наш жизненный путь, и раскрывает шесть ключей безграничного потенциала, благодаря которым наш мозг будет развиваться и обновляться каждый день.


Рекомендуем почитать
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.


Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.