Математическое мышление - [12]
На семинарах Кэрол Дуэк часто говорит родителям, чтобы те донесли до своих детей такую мысль: в правильном выполнении задания нет ничего хорошего, поскольку это свидетельствует об отсутствии обучения. И если дети приходят домой и говорят, что правильно ответили на все вопросы во время урока или теста, родителям стоит реагировать так: «Жаль: выходит, у тебя не было возможности чему-то научиться». Это весьма резкий отклик, но важный: нужно вытеснить идею, которую часто внушают в школе: «Надо делать все правильно, отсутствие ошибок — признак ума». Мы с Кэрол пытаемся изменить видение учителей, чтобы они придавали правильному выполнению заданий меньшее значение, и большее — важности ошибок.
Сэнди Гиллиам — замечательная учительница, за которой я наблюдала много лет. Ее ученики добиваются серьезных успехов и любят математику. Однажды я присутствовала на первом занятии, которое она проводила для учеников старших классов. Когда те работали над заданием, Сэнди заметила, что один ученик сделал ошибку и понял это. Она подошла к мальчику и попросила его показать свою ошибку на доске. Он неуверенно посмотрел на учительницу и сказал: «Но я же получил неправильный ответ». Сэнди ответила, что именно поэтому она хочет, чтобы ученик поделился своим результатом, и это очень полезно. Ведь такую же ошибку могут сделать и другие, поэтому стоит обсудить ее всем классом. Мальчик согласился и записал свой ход мыслей на доске. Со временем рассказы о своих ошибках стали для учеников обычной практикой. Я часто показываю видео с учениками Сэнди, которое помогает учителям и директорам школ понять, чего могут добиться дети при эффективном преподавании математики.
На одном из моих любимых видео показано, как ученики Сэнди пытаются вместе решить на доске сложную задачу. Ученики напряженно работают над решением и слушают друг друга, когда кто-то из них предлагает идею. Они часто ошибаются и выбирают неверный путь, но в итоге общими усилиями добиваются результата. Это яркий пример того, как ученики используют стандартные математические методы и практические задания (в соответствии с рекомендациями CCSS[8]). Они объединяют свои идеи с известными им методами, чтобы решить нестандартную прикладную задачу из тех, с которыми им предстоит столкнуться в реальном мире. Опытные учителя, которые смотрят это видео, часто отмечают, что ученики чувствуют себя комфортно, предлагая различные идеи, и не боятся ошибиться. И вот почему дети способны эффективно выполнять задания, когда им не мешает страх перед ошибками: Сэнди научила их принимать ошибки и подчеркивает их важность в обучении.
Недавно я работала в Стэнфорде над одним исследованием вместе с Кэрол Дуэк, Грегом Уолтоном, Кариссой Ромеро и Дэйвом Паунеску. Именно они предложили множество приемов, которые улучшают мышление учеников и усиливают их чувство принадлежности к школе[9]. В ходе исследования мы провели сеанс воздействия на мышление учителей, объяснив им значение ошибок и ряд идей по поводу преподавания, о которых идет речь в данной главе. Мы быстро выяснили, что у учителей, которые были подвергнуты воздействию, гораздо более развито мышление роста и более положительное отношение к ошибкам в математике. Вдобавок они сообщили о том, что используют во время уроков разные идеи по поводу поощрения ошибок. Есть и другие важные изменения, которые учителя могут внести в свои уроки; они рассмотрены в следующих главах. Пока хочу отметить, что одно из самых важных изменений, которое могут без труда внедрить учителя или родители (и оно принесет ученикам огромную пользу), — корректировка обратной связи об ошибках. В следующей главе я расскажу, как важно изменить сам подход к математике. Необходимо показать ученикам, что истинная математика — не нечто неизменное и основанное на процедурах; это открытый и творческий предмет, суть которого сводится к установлению связей, обучению и развитию.
Глава 3. Творчество и красота в математике
Что же такое математика на самом деле? И почему многие ученики либо ненавидят, либо боятся ее — а то и всё вместе? Математика отличается от других предметов не тем, что в ней, как утверждают многие, могут быть только правильные или неправильные ответы, а тем, что методы ее преподавания отличаются от методов преподавания других предметов и у многих есть предубеждение к ней. Если вы спросите учеников, что они думают о своей задаче на уроках математики, большинство скажут: правильно отвечать на вопросы. Немногие считают, что на уроках математики они могут оценить ее красоту, задать глубокие вопросы, изучать богатый набор связей, которые описывает эта дисциплина, или даже научиться применять ее на практике. Как правило, ученики считают, что на уроках математики они должны только добиваться требуемого результата. Так, шестилетний сын одной из моих коллег (ее зовут Рейчел Ламберт) как-то, придя из школы, заявил, что не любит математику. Когда Рейчел спросила, в чем причина, он ответил: «На уроках мы только отвечаем на вопросы и мало учимся». Вот что чувствуют сами дети с раннего возраста.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.