Математическое мышление - [14]

Шрифт
Интервал

Знание математических закономерностей помогает людям покорять океаны, прокладывать маршруты космических полетов, разрабатывать технологии для мобильных телефонов и социальных сетей, а также создавать новые научные и медицинские знания. Однако многие ученики считают, что математика — мертвая наука, не имеющая отношения к их будущему.

Чтобы понять суть математики, следует рассмотреть ее закономерности в реальном мире. Закономерности в океане и дикой природе, архитектуре и осадках, поведении животных и социальных сетях вызывают у математиков восхищение. Последовательность Фибоначчи, пожалуй, самая известная из них. Фибоначчи — итальянский математик, опубликовавший в 1202 году в Италии работу о закономерности, названной в его честь. Сейчас известно, что она появилась несколькими столетиями ранее, еще в 200 году до н. э., в Индии. Вот как выглядит последовательность Фибоначчи:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55…

Первые два числа — 1 и 1, а каждое следующее представляет собой сумму двух предыдущих.

Попробуйте приглядеться к снежинкам. Каждая из них уникальна, но их объединяет одна закономерность. Все снежинки имеют шестиугольную структуру, поэтому у них всегда шесть концов (рис. 3.2 и 3.3).


Рис. 3.2. Математика в снежинках


Рис. 3.3. Молекулы воды


Во время онлайн-курса для учеников, изучающих математику, в котором поучаствовало более 100 тысяч слушателей, я показала, как математику используют животные. Аудитория заинтересовалась этим. Например, дельфины находят друг друга в воде с помощью звуков (рис. 3.4).


Рис. 3.4. Общение между дельфинами


Дельфин издает характерные щелкающие звуки, которые отражаются от различных объектов и возвращаются к нему. Затем по времени прохождения и характеристикам звукового сигнала животное определяет, где находятся его друзья. Он интуитивно вычисляет скорость, то есть находит ответ на тот самый вопрос о скорости, который задают ученикам на уроках алгебры (во многих случаях он никак не связан с реальной жизнью). Во время онлайн-курса я в шутку сказала слушателям, что, если бы дельфины могли разговаривать на человеческом языке, они стали бы учителями алгебры!

Во время исследований для онлайн-курса моя студентка Микаэла обнаружила, что пауки — настоящие эксперты по спиралям. Когда паук создает паутину, он сначала плетет фигуру в форме звезды между двумя прочными вертикальными опорами, например ветвями дерева. Затем паук закручивает спираль. Ему нужно построить ее как можно быстрее, чтобы закрепить звезду, поэтому он выбирает логарифмическую спираль. В ней расстояние между следующими друг за другом витками вокруг центра увеличивается в одинаковое количество раз (рис. 3.5).


Рис. 3.5. Паутина


Получается, чем больше спираль, тем быстрее она расширяется. Но при этом в паутине образуются большие промежутки, поэтому паук начинает строить еще одну, более плотную спираль, одновременно отцепляя первую. Новая спираль — арифметическая, в ней расстояние между витками постоянно. Плетение второй спирали занимает гораздо больше времени, поскольку приходится делать больше кругов вокруг центра звезды. Но это помогает пауку поймать больше насекомых, поскольку в сети не остается крупных промежутков. Такую поразительную инженерную конструкцию можно было бы построить с помощью вычислений, но паук интуитивно использует математику при разработке и применении своего алгоритма. Другие примеры использования математики животными можно найти в работах Кита Девлина (Devlin, 2006).

Когда я демонстрировала все эти идеи слушателям своего онлайн-курса, некоторые из них не соглашались со мной, заявляя, что математика в природе и мире животных — это не математика. Эти люди признавали только область чисел и вычислений. Я хотела подтолкнуть слушателей к более широкому восприятию предмета. И достигла своей цели. К концу курса среди слушателей был проведен опрос, в ходе которого 70% респондентов сказали, что изменили свои представления о том, что такое математика. При этом 75% слушателей убедили себя, что они могут добиться успеха в математике.

Математика есть повсюду в природе и искусстве, и все же большинство школьников даже не слышали о золотом сечении и не воспринимают математику как науку о закономерностях. Если мы не откроем ученикам эту дисциплину во всем ее многообразии, то лишим их возможности ощутить волшебство математики.

Не я одна считаю, что школьная математика не имеет ничего общего с математикой истинной. В 1999 году Рубен Херш написал замечательную книгу под названием «Что же такое математика?» (Hersh, 1999). Он утверждает, что математику представляют на уроках в искаженном виде. Большинство учеников воспринимают ее как совокупность ответов на вопросы, которых никто не ставит. Но Херш отмечает следующее.

Речь о вопросах, которые стимулируют развитие математики. Решение задач и постановка новых — основа этой науки. Если математику представить в отрыве от жизни, она действительно покажется мертвой.

Научные исследования (Silver, 1994) показали: когда ученикам дают возможность сформулировать математическую задачу, проанализировать ситуацию и придумать вопрос к ней (в этом и состоит суть истинной математики), это повышает их вовлеченность и успеваемость. Но это редкость. Помните, в известном фильме 2001 года «Игры разума» Джон Нэш (которого играет Рассел Кроу) изо всех сил пытается найти интересный вопрос? Это и есть крайне важный первый этап математической работы. На школьных уроках математики у учеников нет возможности выполнить это важное действие; они тратят время на вопросы, которые кажутся им не имеющими отношения к жизни и которых они не ставили.


Еще от автора Джо Боулер
Безграничный разум

Профессор Стэнфорда Джо Боулер опровергает расхожие мифы о врожденных способностях, предопределяющих наш жизненный путь, и раскрывает шесть ключей безграничного потенциала, благодаря которым наш мозг будет развиваться и обновляться каждый день.


Рекомендуем почитать
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.


Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.