Математическое мышление - [16]
Кроме того, необходимо, чтобы ученики рассуждали на уроках математики, поскольку сам акт осмысления задачи и анализа рассуждений другого человека вызывает интерес. Ученики и взрослые гораздо активнее участвуют в работе, когда им дают открытые задачи и разрешают предлагать свои методы и пути решения, чем в работе над задачами, требующими вычислений и ответа. В главе 5 представлено много содержательных математических задач, требующих логических рассуждений, а также показаны некоторые способы их составления.
В сфере обучения математике часто возникает и другая проблема: люди убеждены в том, что эта дисциплина сводится к вычислениям, а лучшие математические умы — люди, которые умеют быстро вычислять. Более того, некоторые считают, что успешно заниматься математикой может только тот, кто умеет быстро думать. Но многие математики, которых можно считать весьма одаренными людьми, выполняют вычисления медленно, потому что их рассуждения очень тщательны и глубоки.
Лоран Шварц получил Филдсовскую премию и был одним из величайших математиков своего времени. Однако в школе он решал математические задачи медленнее всех одноклассников. В автобиографии «Математик, преодолевающий трудности своего столетия», опубликованной в 2001 году, Шварц вспоминает свои школьные годы и говорит, что он чувствовал себя глупым, поскольку в его школе ценилась способность быстро думать, а он размышлял медленно и глубоко.
Я никогда не был уверен в своих способностях и считал, что я не наделен интеллектом. Я всегда думал и до сих пор думаю медленно. Мне нужно время, чтобы уловить смысл происходящего, поскольку мне необходимо понять все до конца. К концу одиннадцатого класса я в глубине души считал себя тупым. Это долго меня беспокоило.
Я до сих пор думаю медленно… В конце одиннадцатого класса я проанализировал ситуацию и пришел к выводу, что скорость мышления не имеет прямого отношения к интеллекту. Гораздо важнее глубоко понимать суть вещей и их взаимосвязи. Вот в чем заключается интеллект. Скорость размышлений не важна (Schwartz, 2001).
Шварц, как и многие другие математики, пишет об искажении дисциплины на уроках, а также о том, что суть математики в действительности сводится к определению связей и глубоким размышлениям. Многие школьники думают точно так же медленно и глубоко, но не верят в себя. Сама необходимость быстрых вычислений отталкивает многих детей, особенно девочек (подробнее см. главу 4 и главу 7), но по-прежнему в ходу тесты, флеш-карточки и математические приложения с ограничением времени на выполнение заданий. Национальные лидеры, например экс-президент Национального совета преподавателей математики (National Council of Teachers of Mathematics, NCTM) Кэти Сили, стараются опровергнуть это мнение, предлагая новый способ эффективного изучения предмета (см. Seeley, 2009, 2014), чтобы люди, которым свойственно медленное и глубокое мышление (Boaler, 2002b), прекратили думать, будто они не созданы для математики. В следующей главе показан подход, при котором ценится глубина, а не скорость мышления, который помогает развить связи в головном мозге и пробуждает интерес у гораздо большего количества учеников.
В начале этой главы шла речь о том, что математика отличается от других дисциплин. Но это связано не с ее природой, как считают многие, а с серьезными и распространенными заблуждениями по поводу этой дисциплины: будто она основана на правилах и процедурах; будто успешно заниматься ею может только тот, кто умеет быстро думать; будто главное в математике — определенность и правильные и неправильные ответы, и суть ее сводится к числам. Такие ошибочные представления — одна из причин того, что до сих пор в преподавании математики используются традиционные, неправильные и неэффективные методы. Многие родители ненавидели этот предмет в школе, но все равно выступают в поддержку традиционного подхода, полагая, что так и должно быть, что отталкивающие методы преподавания, которые они познали на своем опыте, обусловлены природой самой математики. Многим учителям начальной школы также пришлось пережить в свое время ужасные испытания при изучении математики; им трудно преподавать ее, поскольку и для них она выглядит как формальный набор процедур. Когда я показываю таким учителям, что математика — нечто иное и не нужно подвергать своих учеников тем же тяготам, через которые прошли они сами, у них возникает подлинное чувство освобождения и даже эйфории, как показано в главе 5. Если мы проанализируем, сколько заблуждений встречается на уроках математики, нам будет легче понять масштаб проблем в ее преподавании по всему миру, а также (что еще важнее) сделать вывод о том, что неудач в математике и тревог в связи с этим предметом вполне можно избежать.
Взглянув на математику, которая присутствует в окружающем мире и которую используют специалисты, мы увидим, что это творческая, наглядная, связная, живая дисциплина. Но многие ученики воспринимают ее как набор бесполезных методов и процедур, которые нужно зачем-то запоминать; как сотни ответов на вопросы, которых они никогда не задавали. Когда людей спрашивают о применении математики в реальном мире, они, как правило, думают о числах и вычислениях (как рассчитать ипотечный кредит или цену продажи). Но математическое мышление не сводится только к этому. Мы применяем математику, когда рассуждаем, как провести время, сколько событий и заданий можно запланировать на день, какая площадь нужна для установки оборудования или разворота автомобиля, сколько событий может произойти. Математика помогает понять, как распространяются твиты и сколько людей могут их получить. Мир с уважением относится к людям, которые быстро выполняют вычисления, но некоторые люди при этом не способны достичь важных целей с их помощью, зато другие, хотя и размышляют очень медленно и совершают много ошибок, могут сотворить с помощью математики нечто удивительное. В современном мире вычисления полностью автоматизированы, привычны и ни у кого не вызывают удивления. Сильные мыслители теперь — люди, которые устанавливают связи, рассуждают логически и творчески используют пространство, данные и числа.
Книга познакомит вас с повседневными приложениями теории вероятностей и математической статистики, мягко вводя в мир нешкольной математики. Лейтмотивом изложения станут широко известные «законы Мёрфи», или «законы подлости», — несерьезные досадные закономерности, наблюдаемые каждый день, но имеющие, однако, объективное математическое обоснование. Кроме разнообразных примеров из области теории вероятностей, в книге немало говорится и о смежных разделах: теории мер, марковских цепях, стохастических процессах, теории очередей, динамическом хаосе и т. п. Эта книга подойдет и школьнику, которому не терпится попасть в университет, и студенту, недоумевающему: «Куда я попал?», — и преподавателю, которому нужны оригинальные живые примеры, а также просто любопытному читателю, желающему развить навыки математического мышления, чтобы научиться отсеивать информационный шум и мусор в потоке новостей.
Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.
Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.
В тексте используется дореволюционная орфография. Если у вас не отображаются символы «ять» и другие, установите шрифт Palatino Linotype, или какой‐нибудь свободный шрифт с их поддержкойВикитекаВсякому, кто любитъ свой предметъ, бываетъ интересно знать, какъ онъ начался, какимъ путемъ онъ развивался, и какъ онъ вылился въ свою послѣднюю форму. Въ этой книжкѣ изложена исторія ариѳметики, и очерки ея назначены для тѣхъ, кто чувствуетъ расположеніе къ математикѣ. Юнымъ математикамъ я прежде всего назначаю свой трудъ.