Математическое мышление - [17]
Нельзя винить учителей в том, что во многих школах преподается ограниченная и выхолощенная версия математики. Учителям обычно дают длинные списки тем, которые они должны объяснить, вместе с сотнями описаний. Но на глубокое изучение конкретных идей времени не предусмотрено. Когда учителям дают списки тем для преподавания, они видят предмет, разделенный на составляющие — как разобранный на части велосипед, превратившийся в груду деталей, которые ученикам предстоит чистить и полировать весь год. В списки тем не включены связи; дисциплина в них представлена так, будто связей вообще не существует. Я не хочу, чтобы ученики целый день полировали отдельные детали велосипеда! Я хочу, чтобы они свободно ездили на велосипедах, получая удовольствие от математики, испытывая радость от установления связей и впадая в эйфорию от истинного математического мышления. Когда мы раскроем суть математики и будем преподавать ту широкую, наглядную, творческую математику, о которой идет речь в этой книге, она станет предметом, который может чему-то научить. Ученикам трудно развить мышление роста, если они должны только давать правильные ответы на четкие вопросы. Такие вопросы сами по себе способствуют формированию фиксированного мышления. Когда мы преподаем математику (истинную науку о глубинных связях), это расширяет возможности для формирования мышления роста и обучения, а в классах появляется много счастливых, воодушевленных и увлеченных учеников. В следующих пяти главах представлено много идей, как добиться этого, а также приведены результаты исследований, подтверждающие эти идеи.
Глава 4. Формирование математического мышления: гибкий подход к работе с числами
Малыши любят математику. Дайте детям набор кубиков — и они будут ставить эти детальки друг на друга и располагать в определенном порядке, с интересом наблюдая, как грани выстраиваются в одну линию. Дети смотрят на небо и восхищаются тем, как птицы летят клином. Посчитайте какие-нибудь предметы с маленьким ребенком, затем переставьте их и снова сосчитайте — ребенок придет в восторг от того, что количество предметов не изменилось. Предложите ребенку расставить цветные кубики по какой-нибудь схеме — и он с удовольствием будет создавать повторяющиеся рисунки (самое математическое из всех действий). Кит Девлин написал ряд книг, в которых убедительно доказывается, что математика у нас в крови и всем нам свойственно математическое мышление (см., например, Devlin, 2006). Мы хотим видеть закономерности мира и понимать ритмы Вселенной. Но радость и восторг детей перед математикой быстро уступает место страху и неприязни, как только они начинают изучать ее в школе и их знакомят с набором формальных методов, которые они должны просто принять и запомнить.
В Финляндии, стране с самыми высокими результатами тестов PISA, дети изучают формальные математические методы только после семи лет. В США, Великобритании и некоторых других странах эти методы начинают изучать гораздо раньше. К семи годам дети здесь уже знакомы с алгоритмами сложения, вычитания, умножения и деления чисел, и их заставляют учить таблицу умножения. Младшеклассники приходят в замешательство: все это не имеет для них смысла. Любознательность, которая была свойственна им ранее, угасает и уступает место твердой убежденности в том, что суть математики сводится к инструкциям и правилам.
Главное, что мы можем дать своим ученикам, — стимулировать их к тому, чтобы они играли с числами и фигурами, размышляя, какие закономерности и идеи можно в них выявить. В предыдущей книге (Boaler, 2015a) я рассказала историю Сары Флэннери, которая получила звание «Молодой ученый года» за разработку нового математического алгоритма. В своей автобиографии Сара рассказывает о том, как развивала математическое мышление, начав с решения головоломок в доме своего отца, а также о том, что эти головоломки дали ей больше, чем школьный курс математики (Flannery, 2002). Успешные математики придерживаются подхода к этой науке и к пониманию ее концепций, который отличает их от менее успешных пользователей. Они стремятся понять ее и размышлять о ней, уверены в том, что они могут понять ее смысл. Успешные пользователи математики ищут закономерности и соотношения, анализируют связи. Они опираются на математическое мышление, понимая, что это наука о развитии, стремятся изучать и анализировать новые концепции. Нам необходимо прививать такое мышление ученикам с самого начала их взаимодействия с математикой.
Результаты исследований подтвердили важность мышления роста — убежденности в том, что ваш интеллект развивается и чем больше вы учитесь, тем умнее становитесь. Но чтобы исключить неудачи с математикой, необходимо, чтобы у учеников были установки на рост в отношении себя в сочетании с установками на рост в отношении математики и их роли в связи с этим. Детям необходимо воспринимать математику как концептуальную, развивающую дисциплину, которую необходимо осмыслить. Когда ученики воспринимают математику как последовательность коротких вопросов и фиксированного набора методов, они не могут понять, в чем ее смысл для их личностного роста и обучения. Когда ученики воспринимают математику как мир неизведанного, по которому они могут свободно путешествовать, задавая вопросы и анализируя взаимосвязи, они понимают, что их задача — размышлять, осмысливать происходящее и развиваться. И это значит, что у них есть математическое мышление.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.