Математическое мышление - [15]

Шрифт
Интервал

В своей книге «При чем тут математика?» я описываю подход к организации урока математики, основанный на постановке вопросов (Boaler, 2015a). Преподаватель Ник Фиори создавал для учеников математические ситуации с участием таких предметов, как сосновые шишки, игральные карты, цветные бусины, кости, различные детали, и предлагал сформулировать свои вопросы. Поначалу ученикам было трудно выполнять это задание, но постепенно они заинтересовались и научились использовать свои идеи, проводить математические изыскания и осваивать новые методы.

Много лет школьная дисциплина теряла связь с наукой, которую используют ученые, и с математической жизнью. Ученики тратили тысячи часов на изучение процедур и правил, которые им никогда не пригодятся. Конрад Вольфрам — директор Wolfram-Alpha, одной из важнейших математических компаний во всем мире — резко критикует традиционный подход к преподаванию математики и категорически заявляет, что суть ее не сводится к вычислениям. В своем выступлении на конференции TED[10], которое посмотрели более миллиона людей, Вольфрам предложил, чтобы занятия математикой состояли из четырех этапов.

1. Постановка вопроса.

2. Переход от реального мира к математической модели.

3. Выполнение вычислений.

4. Возврат от модели к реальному миру, чтобы определить, получен ли ответ на исходный вопрос.


Первый этап подразумевает постановку продуманного вопроса по поводу определенных данных или ситуации. Это первое математическое действие, которое необходимо выполнить на рабочем месте. В США самая востребованная профессия — аналитик, или специалист по обработке больших данных, имеющихся в распоряжении каждой компании, и постановке важных вопросов по поводу этих данных. Второй этап, о котором говорит Вольфрам, — создание модели, позволяющей найти ответ на поставленный вопрос; третий — вычисления, а четвертый — возврат от модели к реальному миру, чтобы определить, точен ли ответ. Вольфрам отмечает, что 80% времени на уроках математики в школе тратится на третий этап (вычисления вручную). При этом способность работников делать вычисления не нужна работодателям: это могут делать калькуляторы или компьютеры. Вольфрам предлагает, чтобы вместо третьего этапа школьники уделяли больше времени этапам 1, 2 и 4.

Вольфрам утверждает, что в наше время работодателям необходимы люди, которые умеют задавать верные вопросы, разрабатывать модели, анализировать результаты и интерпретировать ответы, а не быстро выполнять вычисления, как раньше.

В список Fortune 500 входят 500 крупнейших компаний США. Когда в 1970 году руководителей этих компаний спросили, какие качества новых сотрудников представляют для них самую большую ценность, ответы выглядели так (табл. 3.1).


Таблица 3.1. Самые ценные качества сотрудников компаний из списка Fortune 500, по состоянию на 1970 год


Навыки вычислений занимали второе место в списке. В 1999 году список выглядел так, как показано в таблице 3.2.


Таблица 3.2. Самые ценные качества сотрудников компаний из списка Fortune 500, по состоянию на 1999 год


Навыки вычислений опустились на предпоследнее место в списке, а первые места заняли умение работать в команде и навыки решения задач.

Часто родители не видят нужды в строгости, которая составляет суть математики. Многие спрашивали меня: зачем ребенку объяснять свою работу, если он может получить верное решение? Мой ответ неизменен: объяснение называется в математике рассуждением, а рассуждение — обязательное условие математической строгости. Специалисты по естественным наукам доказывают или опровергают теории путем поиска реальных ситуаций, в которых эти теории работают или не работают. Математики доказывают теории в рамках обоснования. Им необходимо привести аргументы, которые убедят других, тщательно выстраивая цепочку рассуждений от одной идеи к другой с помощью логических связей. Математика — сугубо социальная наука, поскольку доказательство возникает только тогда, когда математики могут убедить коллег в наличии логических связей.

Многие работы по математике — плод совместного труда. Леоне Бертон изучала работу математиков и пришла к выводу, что более половины их публикаций подготовлены в соавторстве (Burton, 1999). Но на многих уроках математики ученики в полной тишине заполняют листы с заданиями. В то время как очень важно обсуждать задачи в группах или всем классом. Это самый эффективный инструмент осмысления материала (ученики редко усваивают идеи, не обсудив их); оно делает предмет интереснее и вовлекает детей в процесс обучения. Кроме того, во время обсуждения школьники учатся рассуждать логически и критиковать мнения друг друга, а оба этих качества очень востребованы в современных компаниях. В мире высоких технологий почти все новые профессии подразумевают работу с большими объемами данных, постановку вопросов и поиск способов достижения целей на основе логических рассуждений. Конрад Вольфрам сказал мне, что любой, кто не способен делать математические умозаключения, не сможет эффективно выполнять свои обязанности на рабочем месте. Когда сотрудники рассуждают и обсуждают математические способы решения проблем, их коллеги могут сформулировать новые идеи на основе этих способов, а также определить, нет ли здесь ошибки. Командная работа, которую так высоко ценят работодатели, основана на математическом рассуждении. Люди, которые просто выдают результаты вычислений, не приносят пользы; они должны уметь обосновывать полученные результаты.


Еще от автора Джо Боулер
Безграничный разум

Профессор Стэнфорда Джо Боулер опровергает расхожие мифы о врожденных способностях, предопределяющих наш жизненный путь, и раскрывает шесть ключей безграничного потенциала, благодаря которым наш мозг будет развиваться и обновляться каждый день.


Рекомендуем почитать
Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.


Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление

Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.


Сборник задач по математике с решениями для поступающих в вузы

Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.


Пятьсот двадцать головоломок

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.


Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.