Математическое мышление - [18]
Себастьян Трун, генеральный директор образовательной компании Udacity и исследователь из Стэнфордского университета, обладает математическим мышлением. Я начала работать с ним два года назад. Сначала я знала его как преподавателя информатики и человека, который изобрел беспилотный автомобиль, организовал первый курс MOOC и возглавлял группы по разработке Google Glass и Google Maps. Позже Себастьян перешел от ведения очень успешного онлайн-курса, который прошли 160 тысяч человек, к созданию компании дистанционного обучения Udacity. Мое сотрудничество с ним началось тогда, когда он попросил у меня совета по поводу курсов Udacity. Себастьян — пользователь математики высокого уровня, его многочисленные достижения известны во всем мире. Он написал ряд книг по математике, которые настолько сложны, что от них, как говорит он сам, «из головы может пойти дым». Но мало кто в курсе, что он много размышляет о подходах к пониманию и изучению математики. Когда я беседовала с Себастьяном о моем онлайн-курсе («Как изучать математику») для учителей и родителей, он рассказал, какую роль играет интуиция в освоении математики, решении проблем и осмыслении различных ситуаций. Он поведал, как в процессе создания роботов для Смитсоновского института возникла проблема. Дети и другие посетители института создавали фоновый шум, который дезориентировал роботов. Членам его команды пришлось разработать новые математические способы решения этой проблемы. В итоге Себастьян решил проблему интуитивно. Он рассказал, как сначала было найдено математическое решение, которое имело для него смысл на интуитивном уровне, после чего оно было доказано с помощью математических методов. Себастьян настаивает, что в математике нельзя двигаться дальше, если что-то не имеет смысла на интуитивном уровне. В рамках моего онлайн-курса он советует не работать с формулами или методами, которых дети не понимают, и «просто остановиться», если эти методы не имеют для них смысла.
Как же развивать у учеников математическое мышление, чтобы они были готовы изучать предмет на основе осмысления и интуиции? До начала учебы в школе это простая задача. Достаточно предлагать детям играть с головоломками, фигурами и числами, анализируя взаимосвязи между ними. Но в начальной школе действует система, в которой дети с раннего возраста обязаны изучать много математических методов: правила сложения, вычитания, деления и умножения. Именно тогда ученики отклоняются от математического мышления и у них формируется фиксированное, процедурное мышление. И крайне важно, чтобы учителя и родители представили детям математику как гибкую концептуальную дисциплину, суть которой сводится к размышлениям и осмыслению. Начало работы с числами — лучший пример двух типов мышления, которое мы можем сформировать у своих учеников: один тип отрицательный и приводит к неудаче, а другой положительный и ведет к успеху.
Эдди Грей и Дэвид Толл — британские исследователи, работавшие с учениками в возрасте от семи до тринадцати лет, которых учителя отнесли к числу слабых, середнячков и сильных (Gray & Tall, 1994). Всем им дали задачи с числами, например на сложение или вычитание. Исследователи обнаружили важное различие между слабыми и сильными учениками. Сильные решали задачи с помощью так называемого чувства числа — их работа носила гибкий и концептуальный характер. Слабые не использовали его и старались вспомнить и применить стандартный метод, даже если это трудно. Например, когда ученикам давали такие задачи, как 21 — 6, сильные ученики упрощали задание, сведя его к вычислению 20 — 5, а слабые по единице отнимали 6 от 21, что непросто и часто ведет к ошибкам. После подробного изучения стратегий, которые использовали ученики, исследователи пришли к выводу, что различие между сильными и слабыми состоит не в том, что последние хуже знают математику, а в том, что они иначе взаимодействуют с ней. Вместо того чтобы чувствовать числа, они упорно придерживались формальных схем, которые ранее выучили, и применяли их очень точно, не отказываясь от них даже тогда, когда в них не было смысла. Они не использовали гибкий подход к работе с числами — может быть, потому, что им с самого начала внушили, что нужно запоминать методы и факты о числах, а не гибко взаимодействовать с ними (Boaler, 2015). Исследователи отметили еще один важный момент: слабые ученики выбирают более трудные пути. Гораздо легче вычесть 5 из 20, чем начать с 21 и отсчитывать в обратном порядке. К несчастью для слабых учеников, их часто относят к числу тех, кто с трудом справляется с математикой, поэтому им дают больше заданий на закрепление материала, усиливая их убежденность в том, что успешное изучение математики сводится к запоминанию, а не пониманию и осмыслению. Таких детей направляют по гибельному пути; в итоге они плохо справляются с математикой на протяжении всей жизни.
Математическое мышление подразумевает активный подход к познанию, при котором ученики видят свою задачу в понимании и осмыслении материала. Чувство числа отражает глубокое понимание математики, и оно формируется при применении математического мышления, суть которого — в наполнении чисел и количества смыслом. Нужно развивать чувство числа у учеников — не только потому, что это основа высшей математики (Feikes & Schwingendorf, 2008), но и потому, что оно помогает сформировать математическое мышление, и знание способов развития одного способствует развитию другого.
Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.
Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.
Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.
Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.