Математическое мышление - [18]

Шрифт
Интервал

Себастьян Трун, генеральный директор образовательной компании Udacity и исследователь из Стэнфордского университета, обладает математическим мышлением. Я начала работать с ним два года назад. Сначала я знала его как преподавателя информатики и человека, который изобрел беспилотный автомобиль, организовал первый курс MOOC и возглавлял группы по разработке Google Glass и Google Maps. Позже Себастьян перешел от ведения очень успешного онлайн-курса, который прошли 160 тысяч человек, к созданию компании дистанционного обучения Udacity. Мое сотрудничество с ним началось тогда, когда он попросил у меня совета по поводу курсов Udacity. Себастьян — пользователь математики высокого уровня, его многочисленные достижения известны во всем мире. Он написал ряд книг по математике, которые настолько сложны, что от них, как говорит он сам, «из головы может пойти дым». Но мало кто в курсе, что он много размышляет о подходах к пониманию и изучению математики. Когда я беседовала с Себастьяном о моем онлайн-курсе («Как изучать математику») для учителей и родителей, он рассказал, какую роль играет интуиция в освоении математики, решении проблем и осмыслении различных ситуаций. Он поведал, как в процессе создания роботов для Смитсоновского института возникла проблема. Дети и другие посетители института создавали фоновый шум, который дезориентировал роботов. Членам его команды пришлось разработать новые математические способы решения этой проблемы. В итоге Себастьян решил проблему интуитивно. Он рассказал, как сначала было найдено математическое решение, которое имело для него смысл на интуитивном уровне, после чего оно было доказано с помощью математических методов. Себастьян настаивает, что в математике нельзя двигаться дальше, если что-то не имеет смысла на интуитивном уровне. В рамках моего онлайн-курса он советует не работать с формулами или методами, которых дети не понимают, и «просто остановиться», если эти методы не имеют для них смысла.

Как же развивать у учеников математическое мышление, чтобы они были готовы изучать предмет на основе осмысления и интуиции? До начала учебы в школе это простая задача. Достаточно предлагать детям играть с головоломками, фигурами и числами, анализируя взаимосвязи между ними. Но в начальной школе действует система, в которой дети с раннего возраста обязаны изучать много математических методов: правила сложения, вычитания, деления и умножения. Именно тогда ученики отклоняются от математического мышления и у них формируется фиксированное, процедурное мышление. И крайне важно, чтобы учителя и родители представили детям математику как гибкую концептуальную дисциплину, суть которой сводится к размышлениям и осмыслению. Начало работы с числами — лучший пример двух типов мышления, которое мы можем сформировать у своих учеников: один тип отрицательный и приводит к неудаче, а другой положительный и ведет к успеху.

Чувство числа

Эдди Грей и Дэвид Толл — британские исследователи, работавшие с учениками в возрасте от семи до тринадцати лет, которых учителя отнесли к числу слабых, середнячков и сильных (Gray & Tall, 1994). Всем им дали задачи с числами, например на сложение или вычитание. Исследователи обнаружили важное различие между слабыми и сильными учениками. Сильные решали задачи с помощью так называемого чувства числа — их работа носила гибкий и концептуальный характер. Слабые не использовали его и старались вспомнить и применить стандартный метод, даже если это трудно. Например, когда ученикам давали такие задачи, как 21 — 6, сильные ученики упрощали задание, сведя его к вычислению 20 — 5, а слабые по единице отнимали 6 от 21, что непросто и часто ведет к ошибкам. После подробного изучения стратегий, которые использовали ученики, исследователи пришли к выводу, что различие между сильными и слабыми состоит не в том, что последние хуже знают математику, а в том, что они иначе взаимодействуют с ней. Вместо того чтобы чувствовать числа, они упорно придерживались формальных схем, которые ранее выучили, и применяли их очень точно, не отказываясь от них даже тогда, когда в них не было смысла. Они не использовали гибкий подход к работе с числами — может быть, потому, что им с самого начала внушили, что нужно запоминать методы и факты о числах, а не гибко взаимодействовать с ними (Boaler, 2015). Исследователи отметили еще один важный момент: слабые ученики выбирают более трудные пути. Гораздо легче вычесть 5 из 20, чем начать с 21 и отсчитывать в обратном порядке. К несчастью для слабых учеников, их часто относят к числу тех, кто с трудом справляется с математикой, поэтому им дают больше заданий на закрепление материала, усиливая их убежденность в том, что успешное изучение математики сводится к запоминанию, а не пониманию и осмыслению. Таких детей направляют по гибельному пути; в итоге они плохо справляются с математикой на протяжении всей жизни.

Математическое мышление подразумевает активный подход к познанию, при котором ученики видят свою задачу в понимании и осмыслении материала. Чувство числа отражает глубокое понимание математики, и оно формируется при применении математического мышления, суть которого — в наполнении чисел и количества смыслом. Нужно развивать чувство числа у учеников — не только потому, что это основа высшей математики (Feikes & Schwingendorf, 2008), но и потому, что оно помогает сформировать математическое мышление, и знание способов развития одного способствует развитию другого.


Еще от автора Джо Боулер
Безграничный разум

Профессор Стэнфорда Джо Боулер опровергает расхожие мифы о врожденных способностях, предопределяющих наш жизненный путь, и раскрывает шесть ключей безграничного потенциала, благодаря которым наш мозг будет развиваться и обновляться каждый день.


Рекомендуем почитать
Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.