Математическое мышление - [11]

Шрифт
Интервал

Очень важно подчеркивать ценность ошибок во время урока, в присутствии всех учеников. Но учителям необходимо также давать позитивную обратную связь об ошибках во время взаимодействия с учениками один на один. В первые годы учебы в школе моя дочь получила от учителей сигналы, которые нанесли ей огромный вред и из-за которых у нее в раннем возрасте сформировалось фиксированное мышление. В четыре-пять лет у нее были проблемы со слухом (о чем мы тогда не знали). Из-за этого учителя решили, что у нее ограниченные способности, и давали ей только легкие задания. Моя дочь полностью осознавала это; когда ей было всего четыре, она спрашивала меня, почему другим детям дают более сложные задачи. Мы знаем, что ученики тратят в школе много времени на то, чтобы понять, что о них думают учителя. Моя дочь смогла определить, что ее учителя не очень высокого мнения о ней, поэтому убедила себя в том, что она глупая. Сейчас ей двенадцать, она стала совсем другим человеком и полюбила математику, поскольку уже проучилась три года в замечательной школе, где сразу же определили, что у нее фиксированное мышление, и поняли, что это сдерживает ее развитие.

Когда моя дочь училась в четвертом классе и все еще страдала от фиксированного мышления, мы с ней побывали на уроке математики в третьем классе ее школы. Учительница записала на доске две числовые задачи; моя дочь одну решила правильно, а другую неправильно. Обнаружив ошибку, она отреагировала весьма болезненно, заявив, что у нее совсем плохо с математикой и она даже слабее третьеклассников. В этот момент нужно было сказать ей нечто очень откровенное и важное. Я заявила: «Знаешь, что сейчас произошло? Когда ты решила задачу неправильно, твой мозг вырос, а когда ты получила правильный ответ, в твоем мозге ничего не произошло». Именно так учителям стоит взаимодействовать со своими учениками, которые совершают ошибки. Дочь взглянула на меня широко распахнутыми глазами — и я поняла, что для нее это была очень важная мысль. Сейчас она переходит в шестой класс, и она стала совсем другой: позитивно воспринимает ошибки и положительно относится к себе. Это стало возможно не потому, что ей давали больше заданий по математике или другой работы, а благодаря тому, что ее учили развивать мышление роста.

В 1930-е годы швейцарский психолог Жан Пиаже, один из крупнейших специалистов мира, отбросил идею о том, что суть обучения сводится к запоминанию. Он отмечал, что истинное обучение зависит от понимания того, как идеи согласуются друг с другом. Пиаже предположил, что у учеников есть ментальные модели, определяющие способ сведения идей воедино, а когда они приобретают для учеников определенный смысл, возникает то, что психолог назвал «равновесием» (см., например, Piaget, 1958, 1970). Сталкиваясь с новыми идеями, ученики пытаются привести их в соответствие с имеющимися ментальными моделями. Но если новые идеи не вписываются в существующие модели или эти модели необходимо изменить, ученики приходят в состояние, которое Пиаже обозначал термином «отсутствие равновесия». В таком состоянии человек знает, что новую информацию нельзя включить в его модели обучения; но ее нельзя и отбросить, поскольку она имеет смысл. И тогда человек пытается скорректировать свои модели. На первый взгляд может показаться, что отсутствие равновесия вызывает дискомфорт. Но, по мнению Пиаже, именно оно дарит истинную мудрость. Психолог представил обучение как процесс перехода от равновесия, в котором все связано воедино, к отсутствию оного, когда новая идея не согласуется с существующими моделями, а затем снова к состоянию равновесия. Пиаже утверждает, что этот процесс крайне важен в обучении (Haack, 2011).

В главе 4 рассматриваются практика в математике и типы практических заданий, одни из которых приносят пользу, а другие нет. И я подчеркиваю, что одна из проблем нынешнего математического образования состоит в том, что учеников знакомят с однообразными и простыми концепциями, не позволяющими им перейти к отсутствию равновесия. Мы знаем, что людям с высокой терпимостью к неопределенности легче переходить от отсутствия равновесия к равновесию — и поэтому мы должны чаще ставить учеников в условия неопределенности и риска. В следующих главах показано, как это можно сделать.

Исследования ошибок и отсутствия равновесия крайне важны для преподавания математики, причем не только для создания методов работы над ошибками, но и для выбора заданий. Если мы хотим, чтобы дети делали ошибки, нужно давать им сложные и интересные задачи, которые им трудно выполнить, но которые обеспечат отсутствие равновесия. Задания должны сопровождаться позитивной обратной связью — сигналами, которые помогут ученикам чувствовать себя комфортно, когда они будут напряженно работать, делать ошибки и двигаться дальше. Это серьезные изменения для многих учителей, которые сейчас подбирают задания по математике так, чтобы ученики могли успешно справиться с ними, и задают вопросы, на которые дети обычно отвечают правильно. Получается, ученики не работают с полной отдачей и не получают достаточных возможностей для обучения и роста мозга.


Еще от автора Джо Боулер
Безграничный разум

Профессор Стэнфорда Джо Боулер опровергает расхожие мифы о врожденных способностях, предопределяющих наш жизненный путь, и раскрывает шесть ключей безграничного потенциала, благодаря которым наш мозг будет развиваться и обновляться каждый день.


Рекомендуем почитать
Тайны чисел: Математическая одиссея

«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.


Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.