Вероятности и неприятности. Математика повседневной жизни - [45]
M>∞∙M>∞ = M>∞.
Такие матрицы называют идемпотентными. Может показаться, что это какой-то экзотический случай, но идемпотентны все преобразования проекции, а значит, и представляющие их матрицы. Вообразите преобразование, для каждого трехмерного объекта возвращающее его тень на некой фиксированной стене. В процессе часть информации о форме объекта неизбежно теряется, а другая остается неизменной. На этом основаны занимательные задачи, в которых нужно определить, тело какой формы может отбросить указанные тени. А что случится с тенью, если мы еще раз спроецируем ее на эту же стену? Ровным счетом ничего, она не изменится. Можно точно показать, что любое преобразование проекции идемпотентно, но пример с тенью уже позволяет понять, что это означает и что это свойство не такая уж редкость. Многократное перемножение матрицы перехода для нашей марковской цепи привело нас к такому случаю. Эта предельная матрица отражает все мыслимые партии сразу. Впечатляет, но игра, определяемая такой матрицей, становится уже неинтересной.
Предельная матрица получилась «полосатой»: все ее столбцы одинаковы, и полоски говорят нам, что вероятность перехода определяется только конечной клеткой и не зависит от начала пути: прошлое в марковском процессе теряется безвозвратно (как форма тела в его тени). Любая строка этой предельной матрицы дает точное распределение «популярности» клеток. Полученный набор вероятностей для состояний игры образует особый вектор π, который называется стационарным состоянием цепи (рис. 6.17). Это и есть своеобразная «тень» игры, которая не меняется под действием матрицы перехода[27]: M∙π = π. Величины, обратные найденным нами вероятностям, характеризуют ожидаемое время достижения для каждой клетки. Например, для клетки 68, конечной в игре, инвариантный вектор дает вероятность достижения 2,4 %. Обратная величина равна 41,5, что совпадает со средней продолжительностью игры, полученной в эксперименте.
Рис. 6.17. Стационарное состояние игры отражает распределение вероятности посещения клеток. Точками показаны точные значения вероятностей, а столбиками — полученные после ста тысяч шагов игры
Если бы мы оставили состояние 68 поглощающим, как предписывают правила игры, в бесконечном будущем можно было бы ожидать, что все партии сойдутся к нему. Инвариантом в этом случае был бы вектор, в котором от нуля отлична лишь 68-я позиция. Но и такая матрица перехода может быть полезна. Она дает нам возможность проанализировать время окончания игры. Матрица M>n соответствует n шагам в игре, а значит, элемент (M>n)>ij покажет вероятность достижения состояния j из состояния i за n шагов. Таким образом, мы можем построить точное распределение времени окончания игры, нарисовав график зависимости p(n) = (M>n)>1,68, как показано на рис. 6.18.
Рис. 6.18. Распределение длительности партии в игру «Лила», полученное в ходе ста тысяч экспериментов и теоретически
Так можно не играя вычислить, что изменится при каких-либо поправках к правилам: например, смене поглощающего состояния, добавлении или удалении переходов, усложнении выбрасывания кубика и т. п. Матричные вычисления, в том числе точные, можно выполнять очень быстро, почти мгновенно, в отличие от имитационного моделирования, так что допустимо поручить машине оптимизацию правил игры с целью сделать ее интереснее, создавать маловероятные «ценные клетки» и контролировать при этом длительность партии.
Кстати, в вычислениях для этой главы я использовал один красивый прием, имеющий отношение к нашей второй сквозной теме: алгебраическим структурам. С давних пор известен способ умножения целых чисел, который зовется то египетским, то способом русского крестьянина и представляет интерес не только своим практическим смыслом, но и глубокой математической основой и следующей из нее универсальностью. Вы без труда найдете его описание во многих книгах по популярной математике. Метод основан на двух очень простых равенствах, вполне очевидных даже для школьника:
(2n)a = 2(na) = na + na,
(n + 1)a = na + a.
Первое равенство позволяет уменьшить множитель n за счет удвоения произведения, а второе — перейти к первому, если уменьшаемый множитель нечетный. Сами по себе эти равенства обладают свойствами ассоциативности и дистрибутивности[28] умножения, то есть носят фундаментальный характер, но поскольку единица — нейтральный элемент для умножения, они образуют весьма эффективную рекурсивную схему вычисления произведения. Эффективность связана с тем, что умножение — или многократное сложение — заменяется операцией удвоения, которая увеличивает результат существенно быстрее. Например, при перемножении чисел в пределах миллиона потребуется не более 20 шагов этого алгоритма.
Но вот что делает этот метод по-настоящему замечательным: число a можно заменить любым другим объектом, для которого определена ассоциативная операция сложения с нейтральным элементом. Такие объекты образуют структуру, называемую полугруппой с единицей, или моноидом. Дело в том, что умножение элемента моноида на целое число эквивалентно многократному сложению этого объекта с самим собой. А это значит, что, имея любой моноид, мы можем применить к нему метод русского крестьянина! Числа образуют моноид не только с операцией сложения, но и с операцией умножения, и тогда метод можно использовать для быстрого возведения в степень. Моноид с операцией умножения формируют и матрицы, а также представляемые ими линейные преобразования. Это позволяет очень быстро вычислить результат возведения матрицы в очень большую степень без потери точности. Чем я и воспользовался.
Говорят: история умеет хранить свои тайны. Справедливости ради добавим: способна она порой и проговариваться. И при всем стремлении, возникающем время от времени кое у кого, вытравить из нее нечто нежелательное, оно то и дело будет выглядывать наружу этими «проговорками» истории, порождая в людях вопросы и жажду дать на них ответ. Попробуем и мы пробиться сквозь бастионы одной величественной Тайны, пронзающей собою два десятка веков.
Эта книга для людей которым хочется лучше понять происходящее в нашем мире в последние годы. Для людей которые не хотят попасть в жернова 3-ей мировой войны из-за ошибок и амбиций политиков. Не хотят для своей страны судьбы Гитлеровской Германии или современной Украины. Она отражает взгляд автора на мировые события и не претендуют на абсолютную истину. Это попытка познакомить читателя с альтернативной мировой масс медиа точкой зрения. Довольно много фактов и объяснений автор взял из открытых источников.
"Ладога" - научно-популярный очерк об одном из крупнейших озер нашей страны. Происхождение и географические характеристики Ладожского озера, животный и растительный мир, некоторые проблемы экономики, города Приладожья и его достопримечательности - таковы вопросы, которые освещаются в книге. Издание рассчитано на широкий круг читателей.
О друзьях наших — деревьях и лесах — рассказывает автор в этой книге. Вместе с ним читатель поплывет на лодке по Днепру и увидит дуб Тараса Шевченко, познакомится со степными лесами Украины и побывает в лесах Подмосковья, окажется под зеленым сводом вековечной тайги и узнает жизнь городских парков, пересечет Белое море и даже попадет в лесной пожар. Путешествуя с автором, читатель побывает у лесорубов и на плотах проплывет всю Мезень. А там, где упал когда-то Тунгусский метеорит, подивится чуду, над разгадкой которого ученые до сих пор ломают головы.
Книга известного английского писателя Г. Дж. Уэллса является, по сути, уникальным проектом: она читается как роман, но роман, дающий обобщенный обзор всемирной истории, без усложнений и спорных вопросов.
Давайте совершим путешествие вместе с наукой в далёкое прошлое, чтобы прийти к тому времени, когда зарождалась жизнь на Земле, и узнать, как это совершалось. От такого путешествия станет крепче уверенность в силе науки, в силе человеческого разума, в нашей собственной силе.
Если вы сомневались, что вам может пригодиться математика, эта книга развеет ваши сомнения. Красота приведенных здесь 10 уравнений в том, что пронизывают все сферы жизни, будь то грамотные ставки, фильтрование значимой информации, точность прогнозов, степень влияния или эффективность рекламы. Если научиться вычленять из происходящего данные и математические модели, то вы начнете видеть взаимосвязи, словно на рентгене. Более того, вы сможете управлять процессами, которые другим кажутся хаотичными. В этом и есть смысл прикладной математики. На русском языке публикуется впервые.
В книге рассказывается о том, как на протяжении нескольких столетий ученые пытались выяснить, почему ночью темно. Оказывается, этот вопрос связан с самым общим устройством нашей Вселенной — с тем, конечна она во времени и в пространстве или бесконечна, расширяется ли она на самом деле и из чего состоит. В книге подробно обсуждаются основные наблюдательные факты, лежащие в основе современной космологии, и история их открытия.Для всех, кто интересуется астрономией и космологией — от старшеклассников до специалистов в других областях науки.
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.
Если упражнения полезны, почему большинство их избегает? Если мы рождены бегать и ходить, почему мы стараемся как можно меньше двигаться? Действительно ли сидячий образ жизни — это новое курение? Убивает ли бег колени и что полезнее — кардио- или силовые тренировки? Дэниел Либерман, профессор эволюционной биологии из Гарварда и один из самых известных исследователей эволюции физической активности человека, рассказывает, как мы эволюционировали, бегая, гуляя, копая и делая другие — нередко вынужденные — «упражнения», а не занимаясь настоящими тренировками ради здоровья. Это увлекательная книга, после прочтения которой вы не только по-другому посмотрите на упражнения (а также на сон, бег, силовые тренировки, игры, драки, прогулки и даже танцы), но и поймете, что для борьбы с ожирением и диабетом недостаточно просто заниматься спортом.