Вероятности и неприятности. Математика повседневной жизни - [47]

Шрифт
Интервал

15 минут, среднее время ожидания составило бы половину периода — 7,5 минуты. Но с интенсивностью так не выйдет! При отсутствии дополнительных условий движение транспорта моделируют пуассоновским потоком, а это значит, что время ожидания автобуса будет подчиняться экспоненциальному закону с той же интенсивностью. Но математическое ожидание для экспоненциально распределенной величины с интенсивностью λ равно 1/λ, откуда и следует наш вывод. И что совсем обидно — количество времени, уже проведенного вами на остановке, никак не влияет на вероятность того, что автобус вот-вот подойдет. Это свойство экспоненциального распределения — отсутствие памяти, связанное с независимостью пуассоновских событий.

Впрочем, если быть точным, то дела с ожиданием автобуса обстоят еще хуже. Измеряемый наблюдателем случайный отрезок времени между машинами статистически больше 1/λ, и вероятность длительного интервала выше, чем среднего. Такой парадокс мы уже встречали — это парадокс наблюдателя или инспектора.

* * *

Подведем итог. Приходя на остановку, нужно четко принять решение: ждать или идти пешком. Размышлять на тему: подождать еще или уже пойти — только обрекать себя на встречу с законом подлости. Ведь если вы, прождав 17 минут, плюнете и пойдете пешком, вас, весьма вероятно, обгонит долгожданный автобус, а то и два.

Несправедливость, к которой приводит парадокс инспектора, демонстрирует кривая Лоренца (рис. 6.21). Интересно, что она в случае экспоненциального распределения одинакова для любых интенсивностей. Таким образом, для всех пуассоновских процессов верно утверждение: половина общего времени наблюдения приходится на 20 % случаев, когда это очередное событие задерживается. К этому выводу можно прийти, увидев, что на кривой Лоренца 50 % общего времени приходится на 80 % интервалов, в оставшиеся 20 % попали длинные интервалы, поглощающие половину времени ожидания. Коэффициент Джини для экспоненциального распределения равен в точности 1/2.


Рис. 6.21. Кривая Лоренца для экспоненциального распределения не зависит от его параметра (интенсивности)

Глава 7. Прелести чужой очереди

Я размышляю о законах подлости, стоя в аэропорту в очереди на регистрацию пассажиров и оформление багажа. Хвост длинный, люди разные и заметные со всеми своими сумками, детьми или клетками. Сзади слышу ворчание: «Как обычно, наша очередь тормозит. Вон, гляди, тот усатый в кепке наравне с нами стоял, а теперь вон где… Вот ведь закон подлости!» Этот закон зовется наблюдением Этторе:

Соседняя очередь всегда движется быстрее.

Что же это — психологический эффект или причуды математики?

Еще раз про пуассоновский процесс

Мы уже достаточно знаем о случайных процессах, чтобы немного проанализировать очередь, в которой стоим. За неимением других данных, разумно предположить, что выход из нее происходит по-пуассоновски: пассажиры подходят к стойке регистрации и проводят там какое-то время, не зависящее от времени обработки данных других пассажиров. Перемещение наблюдателя, стоящего в очереди, будет иметь вид монотонно изменяющейся ступенчатой линии, с одинаковыми шагами через случайные промежутки времени, подчиненные экспоненциальному распределению. Пара реализаций примеров пуассоновских процессов с одинаковой интенсивностью приведена на рис. 7.1. Обычно пуассоновский процесс накапливает события, и его изображение выглядит как «лесенка», растущая со временем. Но, стоя в очереди, мы заинтересованы в ее скорейшем уменьшении, так что шаги нашего процесса ведут вниз.


Рис. 7.1. Перемещения двух очередей как пуассоновских процессов с равной интенсивностью. То одна, то другая «вырывается вперед» на какое-то время


Разница двух одинаковых пуассоновских процессов — а именно ее наблюдает человек, скучающий в хвосте и исследующий соседнюю очередь, — представляет собой своеобразное случайное блуждание. В описанном нами случае величина отставания одной очереди от другой подчиняется распределению Скеллама. Для двух одинаковых очередей, пропускающих μ человек в единицу времени, вероятность отставания одной из них на k шагов равна:

P(k) = e>-2μ I>|k|(2μ),

где I>k(x) — встречавшаяся нам в предыдущей главе модифицированная функция Бесселя. Она возникла здесь не из-за круговой симметрии, а как результат сложения двух случайных величин, подчиняющихся распределению Пуассона.

Распределение Скеллама имеет симметричный колоколообразный вид (рис. 7.2), практически не отличимый от биномиального распределения. А раз так, мы уже готовы сделать некоторые качественные выводы, основываясь на опыте, полученном в предыдущей главе.


Рис. 7.2. Вероятность накопления разницы между двумя одинаковыми очередями со средней скоростью 5 шагов в минуту


Во-первых, расстояние между одновременно вставшими в одинаковые очереди людьми будет то увеличиваться, то уменьшаться, при этом станут образовываться характерные меандры с постоянно меняющейся длительностью. Во-вторых, из-за самоподобия случайного блуждания длительность меандров — как для коротких очередей, так и для длинных — окажется соизмеримой со временем стояния в очереди, и, значит, они будут заметны. А меандры — уже повод для недовольства. В-третьих, заранее неизвестно, какая очередь пройдет быстрее, ведь случайное блуждание равновероятно уходит как вверх, так и вниз. И наконец, четвертое заключение: очереди движутся независимо, то и дело опережая и нагоняя друг друга, но в среднем одинаково, и ожидаемая разница между ними стремится к нулю, однако разброс вокруг среднего со временем растет пропорционально квадратному корню из времени.


Рекомендуем почитать
Священный Грааль и тайна деспозинов

Говорят: история умеет хранить свои тайны. Справедливости ради добавим: способна она порой и проговариваться. И при всем стремлении, возникающем время от времени кое у кого, вытравить из нее нечто нежелательное, оно то и дело будет выглядывать наружу этими «проговорками» истории, порождая в людях вопросы и жажду дать на них ответ. Попробуем и мы пробиться сквозь бастионы одной величественной Тайны, пронзающей собою два десятка веков.


Физик в гостях у политика

Эта книга для людей которым хочется лучше понять происходящее в нашем мире в последние годы. Для людей которые не хотят попасть в жернова 3-ей мировой войны из-за ошибок и амбиций политиков. Не хотят для своей страны судьбы Гитлеровской Германии или современной Украины. Она отражает взгляд автора на мировые события и не претендуют на абсолютную истину. Это попытка познакомить читателя с альтернативной мировой масс медиа точкой зрения. Довольно много фактов и объяснений автор взял из открытых источников.


Ладога

"Ладога" - научно-популярный очерк об одном из крупнейших озер нашей страны. Происхождение и географические характеристики Ладожского озера, животный и растительный мир, некоторые проблемы экономики, города Приладожья и его достопримечательности - таковы вопросы, которые освещаются в книге. Издание рассчитано на широкий круг читателей.


Три аксиомы

О друзьях наших — деревьях и лесах — рассказывает автор в этой книге. Вместе с ним читатель поплывет на лодке по Днепру и увидит дуб Тараса Шевченко, познакомится со степными лесами Украины и побывает в лесах Подмосковья, окажется под зеленым сводом вековечной тайги и узнает жизнь городских парков, пересечет Белое море и даже попадет в лесной пожар. Путешествуя с автором, читатель побывает у лесорубов и на плотах проплывет всю Мезень. А там, где упал когда-то Тунгусский метеорит, подивится чуду, над разгадкой которого ученые до сих пор ломают головы.


Краткая всемирная история

Книга известного английского писателя Г. Дж. Уэллса является, по сути, уникальным проектом: она читается как роман, но роман, дающий обобщенный обзор всемирной истории, без усложнений и спорных вопросов.


Как произошла жизнь на Земле

Давайте совершим путешествие вместе с наукой в далёкое прошлое, чтобы прийти к тому времени, когда зарождалась жизнь на Земле, и узнать, как это совершалось. От такого путешествия станет крепче уверенность в силе науки, в силе человеческого разума, в нашей собственной силе.


Десять уравнений, которые правят миром. И как их можете использовать вы

Если вы сомневались, что вам может пригодиться математика, эта книга развеет ваши сомнения. Красота приведенных здесь 10 уравнений в том, что пронизывают все сферы жизни, будь то грамотные ставки, фильтрование значимой информации, точность прогнозов, степень влияния или эффективность рекламы. Если научиться вычленять из происходящего данные и математические модели, то вы начнете видеть взаимосвязи, словно на рентгене. Более того, вы сможете управлять процессами, которые другим кажутся хаотичными. В этом и есть смысл прикладной математики. На русском языке публикуется впервые.


Почему небо темное. Как устроена Вселенная

В книге рассказывается о том, как на протяжении нескольких столетий ученые пытались выяснить, почему ночью темно. Оказывается, этот вопрос связан с самым общим устройством нашей Вселенной — с тем, конечна она во времени и в пространстве или бесконечна, расширяется ли она на самом деле и из чего состоит. В книге подробно обсуждаются основные наблюдательные факты, лежащие в основе современной космологии, и история их открытия.Для всех, кто интересуется астрономией и космологией — от старшеклассников до специалистов в других областях науки.


Бесконечная сила

Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.


Парадокс упражнений

Если упражнения полезны, почему большинство их избегает? Если мы рождены бегать и ходить, почему мы стараемся как можно меньше двигаться? Действительно ли сидячий образ жизни — это новое курение? Убивает ли бег колени и что полезнее — кардио- или силовые тренировки? Дэниел Либерман, профессор эволюционной биологии из Гарварда и один из самых известных исследователей эволюции физической активности человека, рассказывает, как мы эволюционировали, бегая, гуляя, копая и делая другие — нередко вынужденные — «упражнения», а не занимаясь настоящими тренировками ради здоровья. Это увлекательная книга, после прочтения которой вы не только по-другому посмотрите на упражнения (а также на сон, бег, силовые тренировки, игры, драки, прогулки и даже танцы), но и поймете, что для борьбы с ожирением и диабетом недостаточно просто заниматься спортом.