Вероятности и неприятности. Математика повседневной жизни - [48]
Выходит, нет никаких подлых штучек злодейки-судьбы, а есть только честное случайное блуждание. Правда, если нам не повезло и мы оказались во временно отстающей очереди, то мы в ней проведем больше времени и, согласно закону велосипедиста, у нас будет больше возможностей посетовать на судьбу! А теперь, внимание, хорошие новости: в любой выбранный интервал времени тех, кому повезет попасть в быструю очередь, будет больше, чем невезунчиков, ведь быстрая очередь может пропустить больше людей! Но, увы, это ничуть не утешит того, кто надолго застрял в хвосте.
Теория для заскучавших в коридоре
Тем и хороша математика, что она способна сделать увлекательным даже стояние в очереди. Например, можно прикинуть, сколько еще ждать своей очереди, но для этого, как ни странно, надо посмотреть не вперед, а назад, на растущий хвост. Если подождать какое-то время, скажем 10 минут, и посчитать, сколько человек выстроилось за вами, то, разделив количество людей перед вами на полученное число, вы вычислите среднее время ожидания в десятках минут. Например, пусть за десять минут хвост вырос на пять человек; если в момент подсчета перед вами семь человек, то ожидаемое время ожидания составит 10 × 7/5 = 14 минут. Понятно, что эта оценка будет весьма грубой, но любопытно, что она действительно соответствует среднему времени ожидания. Об этом говорит теорема Литтла — один из самых ранних и самых общих результатов теории очередей, известной в России как теория массового обслуживания.
Теория очередей появилась в самом начале XX века, с первых работ датского математика Агнера Эрланга (1878–1929), который занимался зарождающейся областью телекоммуникаций. За сотню лет результаты исследований Эрланга прочно вошли в нашу жизнь — настолько, что возникает ощущение, будто мы вошли в мир телекоммуникаций. Несколько позже большой вклад в развитие этой науки внес советский математик Александр Яковлевич Хинчин (1894–1959), который вместе с Андреем Николаевичем Колмогоровым (1903–1987) заложил основы современной теории вероятностей. Результаты теории массового обслуживания важны для проектирования магазинов и залов ожидания, оптимального управления операционной системой компьютера и операционным залом банка, для грамотной разработки бюрократической машины, управления дорожной сетью и в оценке рисков страховой компании. В очередях могут стоять люди (покупатели, клиенты, пассажиры), автотранспорт и грузы, задачи и документы; а обрабатывать их — кассиры, операторы, регистраторы, серверы и бюрократы. Чтобы не путаться и не утопать в деталях, будем называть стоящих в очереди клиентами, а того, кто их обслуживает, — оператором.
Представьте себе очередь, в которую люди встают согласно некоторому распределению временных интервалов p>in(t) со средним значением 1/λ. Время, которое оператор тратит на работу с клиентами, подчинено распределению p>out(t) со средним значением 1/μ. На рисунке 7.3 показана очередь, в которой ожидают два клиента под номерами 1 и 2, один с номером 0 обслуживается, а клиент номер 3 готов в нее встать. Ее можно описать как марковский процесс, в котором состояние определяется длиной очереди: состояние 0 — в очереди никого, состояние 1 — один клиент, состояние 2 — два клиента и т. д. В идеальном мире ничто не запрещает очереди стать сколь угодно длинной; значит, мы получаем цепь с бесконечным числом состояний, и для анализа очереди придется иметь дело с матрицей переходов, содержащей бесконечное число строк и столбцов. В предыдущей главе мы уже имели дело с марковскими процессами, и для анализа стационарного состояния цепи нам понадобилось возводить матрицу переходов в бесконечную степень. Так что же, надо вычислить бесконечную матрицу, возведенную в бесконечную степень? Математиков эта задача не испугала, и уже в 1930-е были придуманы методы для таких вычислений. Результатом анализа будут свойства стационарного состояния очереди. Оно не меняется со временем, но все параметры очереди, такие как длина или время ожидания в ней, — случайные величины. Они могут постоянно меняться, но при этом всегда остаются в рамках каких-то распределений, от времени не зависящих. И чего только не придумаешь, скучая в зале ожидания!
Рис. 7.3. Модель очереди
Свойства очереди сильно зависят от соотношения λ и μ. Если λ > μ, хвост будет расти неограниченно, как пробка на дороге, в которую въезжает больше автомобилей, чем может выехать. Она попросту перекрывает поток клиентов, накапливая их в себе. Для λ < μ очередь устойчива. Она может расти или уменьшаться по мере того, как клиенты добавляются и выходят из нее, но клиенты в ней не накапливаются неограниченно: сколько их вошло в зону ожидания, столько же выйдет. Иными словами, устойчивая очередь может затормозить тех, кто в ней стоит, но неспособна изменить интенсивность потока людей, проходящих сквозь нее. И если на входе мы имеем в среднем λ человек в единицу времени, то и на выходе должны получить такой же поток, независимо от скорости работы оператора. Случай λ ≈ μ рассматривается отдельно. Такая метастабильная очередь ведет себя неустойчиво и моделируется процессом случайного блуждания — с той только разницей, что длина очереди не может быть отрицательной. У блуждающей таким образом системы есть непроницаемая стенка снизу, которая, однако, не мешает практически неограниченному росту длины очереди. И хотя рано или поздно она сократится и даже исчезнет, отклонения времени ожидания и времени работы оператора от среднего будут столь велики, что счесть такое обслуживание удовлетворительным никак не получится. Далее мы будем рассматривать только устойчивые очереди. От характера распределений
Говорят: история умеет хранить свои тайны. Справедливости ради добавим: способна она порой и проговариваться. И при всем стремлении, возникающем время от времени кое у кого, вытравить из нее нечто нежелательное, оно то и дело будет выглядывать наружу этими «проговорками» истории, порождая в людях вопросы и жажду дать на них ответ. Попробуем и мы пробиться сквозь бастионы одной величественной Тайны, пронзающей собою два десятка веков.
Эта книга для людей которым хочется лучше понять происходящее в нашем мире в последние годы. Для людей которые не хотят попасть в жернова 3-ей мировой войны из-за ошибок и амбиций политиков. Не хотят для своей страны судьбы Гитлеровской Германии или современной Украины. Она отражает взгляд автора на мировые события и не претендуют на абсолютную истину. Это попытка познакомить читателя с альтернативной мировой масс медиа точкой зрения. Довольно много фактов и объяснений автор взял из открытых источников.
"Ладога" - научно-популярный очерк об одном из крупнейших озер нашей страны. Происхождение и географические характеристики Ладожского озера, животный и растительный мир, некоторые проблемы экономики, города Приладожья и его достопримечательности - таковы вопросы, которые освещаются в книге. Издание рассчитано на широкий круг читателей.
О друзьях наших — деревьях и лесах — рассказывает автор в этой книге. Вместе с ним читатель поплывет на лодке по Днепру и увидит дуб Тараса Шевченко, познакомится со степными лесами Украины и побывает в лесах Подмосковья, окажется под зеленым сводом вековечной тайги и узнает жизнь городских парков, пересечет Белое море и даже попадет в лесной пожар. Путешествуя с автором, читатель побывает у лесорубов и на плотах проплывет всю Мезень. А там, где упал когда-то Тунгусский метеорит, подивится чуду, над разгадкой которого ученые до сих пор ломают головы.
Книга известного английского писателя Г. Дж. Уэллса является, по сути, уникальным проектом: она читается как роман, но роман, дающий обобщенный обзор всемирной истории, без усложнений и спорных вопросов.
Давайте совершим путешествие вместе с наукой в далёкое прошлое, чтобы прийти к тому времени, когда зарождалась жизнь на Земле, и узнать, как это совершалось. От такого путешествия станет крепче уверенность в силе науки, в силе человеческого разума, в нашей собственной силе.
Если вы сомневались, что вам может пригодиться математика, эта книга развеет ваши сомнения. Красота приведенных здесь 10 уравнений в том, что пронизывают все сферы жизни, будь то грамотные ставки, фильтрование значимой информации, точность прогнозов, степень влияния или эффективность рекламы. Если научиться вычленять из происходящего данные и математические модели, то вы начнете видеть взаимосвязи, словно на рентгене. Более того, вы сможете управлять процессами, которые другим кажутся хаотичными. В этом и есть смысл прикладной математики. На русском языке публикуется впервые.
В книге рассказывается о том, как на протяжении нескольких столетий ученые пытались выяснить, почему ночью темно. Оказывается, этот вопрос связан с самым общим устройством нашей Вселенной — с тем, конечна она во времени и в пространстве или бесконечна, расширяется ли она на самом деле и из чего состоит. В книге подробно обсуждаются основные наблюдательные факты, лежащие в основе современной космологии, и история их открытия.Для всех, кто интересуется астрономией и космологией — от старшеклассников до специалистов в других областях науки.
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.
Если упражнения полезны, почему большинство их избегает? Если мы рождены бегать и ходить, почему мы стараемся как можно меньше двигаться? Действительно ли сидячий образ жизни — это новое курение? Убивает ли бег колени и что полезнее — кардио- или силовые тренировки? Дэниел Либерман, профессор эволюционной биологии из Гарварда и один из самых известных исследователей эволюции физической активности человека, рассказывает, как мы эволюционировали, бегая, гуляя, копая и делая другие — нередко вынужденные — «упражнения», а не занимаясь настоящими тренировками ради здоровья. Это увлекательная книга, после прочтения которой вы не только по-другому посмотрите на упражнения (а также на сон, бег, силовые тренировки, игры, драки, прогулки и даже танцы), но и поймете, что для борьбы с ожирением и диабетом недостаточно просто заниматься спортом.