Вероятности и неприятности. Математика повседневной жизни - [49]
В этой главе мы будем исследовать неприятности и неожиданности, наблюдаемые в очередях, на примере очереди с λ = 30 чел./ч и μ = 34 чел./ч. В среднем новые клиенты будут поступать в нее с интервалом в 2 минуты, а обрабатываться оператором примерно за 1 минуту 45 секунд. Это похоже на очередь у стойки регистрации в аэропорту. На рисунке 7.4 показан пример того, как могут «жить» M/D/1- и M/M/1-очереди с такими параметрами.
Рис. 7.4. Динамика M/D/1 и M/M/1 очередей. Более темным цветом выделены траектории каждого седьмого клиента в очереди. Длина очереди склонна к своеобразным колебаниям: она «дышит», то удлиняясь, то сокращаясь, оставаясь при этом в стационарном состоянии
В стационарном состоянии длина M/M/1-очереди n описывается геометрическим распределением:
Мы встречали его в предыдущей главе, рассматривая простейшую несимметричную марковскую цепь. Зная это распределение, можно вычислить ожидаемую длину
Для нашего примера средняя длина очереди составит 7,5 человек. Время обслуживания клиента (сумма времени ожидания своей очереди и собственно времени работы с оператором) в M/M/1-очереди описывается экспоненциальным распределением с параметром μ − λ. Это приводит к значению среднего времени ожидания
Среднее время работы с каждым клиентом не превышает 2 минут, однако среднее время ожидания для нашего примера равно 15 минутам. Как видно, для стационарной M/M/1-очереди выполняется равенство:
λW = L.
Это и есть формула Литтла, которой мы воспользовались, стоя в очереди и от нечего делать занявшись подсчетами. Будучи очень простой, формула на удивление сильна: она выполняется для очень широкого класса очередей и в самых разных задачах. То, что в формулу Литтла входит только λ, а не μ, отражает основное свойство стабильной (устойчивой) очереди: она может задерживать клиентов, но не меняет их поток, который определяется значением λ. И даже если скорость работы оператора μ будет очень велика, среднее время ожидания все равно определяется входным потоком и уже скопившимся числом клиентов. А поскольку для устойчивых очередей λ<μ, мы получаем еще один закон подлости:
Важная характеристика очереди — время занятости оператора, или длительность непрерывных периодов времени, в которые он обслуживает клиентов. Обозначим это время B. Периоды занятости перемежаются периодами простоя, когда по какой-то причине клиентов в очереди не оказывается. Клиенты приходят, ждут и уходят, а оператор остается работать, поэтому разумно предположить, что B>W. В действительности ожидаемое, среднее время занятости для M/M/1-очередей равно среднему времени ожидания, то есть B=W. Уже не вполне интуитивно понятный результат, но и это еще не всё: при той же интенсивности труда среднее время обслуживания клиента может стать существенно больше среднего времени работы оператора! Вот это уже кажется парадоксом. Получается, оператор в среднем умудряется работать меньше, чем в среднем обслуживается клиент!
Как мы уже говорили, средние значения надо использовать осторожно. Объяснить этот парадокс и понять, что происходит в очереди, можно, привлекая дисперсию распределения времени обслуживания одного клиента p>out(t). Еще в 1930-е австрийскому математику Феликсу Поллачеку удалось в общем виде вычислить отношение W/B для произвольной M/G/1-очереди:
Здесь σ — дисперсия распределения p>out(t). В случае M/M/1-очереди σ = 1/μ, и это отношение равно 1. Но может случиться, что при том же значении среднего распределение p>out(t) будет иметь большую дисперсию, и тогда W окажется больше B. На рисунке 7.5 показан пример, в котором p>in(t) распределено экспоненциально с λ = 30 чел./ч, а p>out(t) описывается гамма-распределением, соответствующим интенсивности μ = 34 чел./ч с дисперсией σ = 2/μ.
Рис. 7.5. Распределения для периодов между появлением новых клиентов (сплошная линия — экспоненциальное распределение) и времени обслуживания одного клиента (пунктирная линия — гамма-распределение)
Говорят: история умеет хранить свои тайны. Справедливости ради добавим: способна она порой и проговариваться. И при всем стремлении, возникающем время от времени кое у кого, вытравить из нее нечто нежелательное, оно то и дело будет выглядывать наружу этими «проговорками» истории, порождая в людях вопросы и жажду дать на них ответ. Попробуем и мы пробиться сквозь бастионы одной величественной Тайны, пронзающей собою два десятка веков.
Эта книга для людей которым хочется лучше понять происходящее в нашем мире в последние годы. Для людей которые не хотят попасть в жернова 3-ей мировой войны из-за ошибок и амбиций политиков. Не хотят для своей страны судьбы Гитлеровской Германии или современной Украины. Она отражает взгляд автора на мировые события и не претендуют на абсолютную истину. Это попытка познакомить читателя с альтернативной мировой масс медиа точкой зрения. Довольно много фактов и объяснений автор взял из открытых источников.
"Ладога" - научно-популярный очерк об одном из крупнейших озер нашей страны. Происхождение и географические характеристики Ладожского озера, животный и растительный мир, некоторые проблемы экономики, города Приладожья и его достопримечательности - таковы вопросы, которые освещаются в книге. Издание рассчитано на широкий круг читателей.
О друзьях наших — деревьях и лесах — рассказывает автор в этой книге. Вместе с ним читатель поплывет на лодке по Днепру и увидит дуб Тараса Шевченко, познакомится со степными лесами Украины и побывает в лесах Подмосковья, окажется под зеленым сводом вековечной тайги и узнает жизнь городских парков, пересечет Белое море и даже попадет в лесной пожар. Путешествуя с автором, читатель побывает у лесорубов и на плотах проплывет всю Мезень. А там, где упал когда-то Тунгусский метеорит, подивится чуду, над разгадкой которого ученые до сих пор ломают головы.
Книга известного английского писателя Г. Дж. Уэллса является, по сути, уникальным проектом: она читается как роман, но роман, дающий обобщенный обзор всемирной истории, без усложнений и спорных вопросов.
Давайте совершим путешествие вместе с наукой в далёкое прошлое, чтобы прийти к тому времени, когда зарождалась жизнь на Земле, и узнать, как это совершалось. От такого путешествия станет крепче уверенность в силе науки, в силе человеческого разума, в нашей собственной силе.
Если вы сомневались, что вам может пригодиться математика, эта книга развеет ваши сомнения. Красота приведенных здесь 10 уравнений в том, что пронизывают все сферы жизни, будь то грамотные ставки, фильтрование значимой информации, точность прогнозов, степень влияния или эффективность рекламы. Если научиться вычленять из происходящего данные и математические модели, то вы начнете видеть взаимосвязи, словно на рентгене. Более того, вы сможете управлять процессами, которые другим кажутся хаотичными. В этом и есть смысл прикладной математики. На русском языке публикуется впервые.
В книге рассказывается о том, как на протяжении нескольких столетий ученые пытались выяснить, почему ночью темно. Оказывается, этот вопрос связан с самым общим устройством нашей Вселенной — с тем, конечна она во времени и в пространстве или бесконечна, расширяется ли она на самом деле и из чего состоит. В книге подробно обсуждаются основные наблюдательные факты, лежащие в основе современной космологии, и история их открытия.Для всех, кто интересуется астрономией и космологией — от старшеклассников до специалистов в других областях науки.
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.
Если упражнения полезны, почему большинство их избегает? Если мы рождены бегать и ходить, почему мы стараемся как можно меньше двигаться? Действительно ли сидячий образ жизни — это новое курение? Убивает ли бег колени и что полезнее — кардио- или силовые тренировки? Дэниел Либерман, профессор эволюционной биологии из Гарварда и один из самых известных исследователей эволюции физической активности человека, рассказывает, как мы эволюционировали, бегая, гуляя, копая и делая другие — нередко вынужденные — «упражнения», а не занимаясь настоящими тренировками ради здоровья. Это увлекательная книга, после прочтения которой вы не только по-другому посмотрите на упражнения (а также на сон, бег, силовые тренировки, игры, драки, прогулки и даже танцы), но и поймете, что для борьбы с ожирением и диабетом недостаточно просто заниматься спортом.