Вероятности и неприятности. Математика повседневной жизни - [43]
О марковских цепях и пессимистах с оптимистами
В рассмотренных моделях мы получали пуассоновский поток смены настроений, генерируя события с помощью его же. В этом можно усмотреть подтасовку: пуассоновский случайный процесс оказался изначально «вшит» в модель. Насколько при этом универсален результат? Можно ли получить его как-нибудь совсем иначе?
Житейский опыт — штука плохо формализуемая, его можно подогнать под различные математические инструменты, внося не только упрощающие допущения, но и спекуляции. В науке такой подход недопустим, но в путешествии по методам теории случайных процессов мы можем позволить себе поиграть с ними, чтобы познакомиться получше.
Выше для объяснения полос в жизни мы учитывали память, то есть вклад предыдущих состояний в текущее. Но можно получить характерное «полосатое» поведение и полностью исключив влияние прошлого.
Для этого полезны объекты, называемые цепями Маркова.
Последовательность дискретных случайных величин x>1,x>2,… называется цепью Маркова, если распределение величины x>n+1 зависит только от распределения величины x>n, но не от предыдущих величин x>1,…x>n. Иными словами, будущее зависит от настоящего, но не от прошлого. Область значений наших величин x>n называется пространством состояний цепи. Переходы между состояниями определяются числами p>ij — вероятностями перейти из состояния с номером i в состояние с номером j. Мы ограничимся случаем, когда эти вероятности не зависят от номера n (тогда цепь Маркова называется однородной). Числа p>ij образуют так называемую матрицу переходов, о которой мы поговорим позже.
Такие цепи удобно представлять в виде взвешенных графов[25]. Вершинами графа оказываются состояния цепи, а ребрами — возможные переходы между ними. Например, однородная марковская цепь, описывающая динамику настроения, может быть представлена в следующем виде. Пусть для простоты у человека есть всего два состояния (радостное и печальное) и он каждый день может оказаться либо в одном, либо в другом. При этом вероятность остаться на следующий день в прежнем состоянии равна 0,75, а вероятность поменять его — 0,25 (рис. 6.11).
Рис. 6.11. Цепь Маркова с двумя состояниями («радостное» и «печальное»). Стрелки обозначают переходы и их вероятности. В нашем симметричном случае вероятность остаться в существующем настроении превышает вероятность его смены, но не зависит от самого настроения. Переходы случаются раз в день
Почему мы выбрали такие вероятности? Наблюдая за динамикой настроения и мировосприятия, можно заметить, что человеку свойственно «залипать» в определенном состоянии духа. Если дела идут в целом хорошо, то и дурная новость может быть воспринята с оптимизмом. И напротив, меланхолическое настроение, однажды поглотив человека, способно испортить даже радостное известие. С математической точки зрения это значит, что вероятность остаться в текущем настроении выше вероятности его изменить.
Наша цепь способна генерировать последовательности состояний, и, конечно, в ней появятся полосы житейской зебры. Самое интересное — выяснить, какому распределению будут подчиняться длительности этих полос. Для нашей более чем простой модели можно получить точный ответ — это геометрическое распределение, описывающее вероятность наблюдать заданное количество испытаний до первого «успеха».
Геометрическое распределение — дискретный аналог экспоненциального в том смысле, что ему подчиняются округленные значения экспоненциально распределенной случайной величины. Существует связь между параметром геометрического распределения и интенсивностью соответствующего экспоненциального. Так мы опять получаем пуассоновский поток смен настроения, и для описанной нами марковской цепи его интенсивность равна λ = —ln(0,75) ≈ 2/7 (рис. 6.12).
Рис. 6.12. Гистограмма для длительностей периодов одинакового настроения в последовательности ежедневных смен состояний, сгенерированной симметричной цепью Маркова, и функция вероятности геометрического распределения с параметром, равным вероятности перехода между состояниями. Последовательность имеет длительность в 10 лет
Если мы нарушим симметрию цепи, то сможем описать «оптимиста» либо «пессимиста», охотнее «залипающего» в том или ином настроении. Распределение длительностей полос отклонится от геометрического, но при этом большая часть полос будет короткой и какой-либо выделенной периодичности мы не отметим (рис. 6.13).
Рис. 6.13. Гистограмма для длительностей периодов постоянного настроения в последовательности, сгенерированной асимметричной цепью Маркова. Ступенчатая линия показывает геометрическое распределение из предыдущего примера
Цепи Маркова — мощный инструмент анализа случайных процессов, в которых кроется некий алгоритм или сценарий. Они дают нам своеобразный взгляд на процессы, привычно относимые к циклическим. Например, известная максима «история человечества ходит по кругу» часто трактуется так: в истории существуют некие циклы или даже периодичности. Доводится слышать, например, о том, что начало века сулит потрясения и войны. Рискуя уйти не в свою тему, возьму на себя смелость предположить, что на самом деле имеет смысл говорить не о буквальных циклах, а о более или менее устойчивых сценариях — закономерных цепочках, которые можно описать цепью Маркова. Среди таких цепей есть класс циклических, которые в самом деле способны создавать повторяющиеся последовательности. Однако настоящей детерминистической периодичности в их поведении нет. Случайно возникая в разные исторические периоды и в разных контекстах, такие циклы похожи друг на друга и могут создать ощущение исторического «дежавю». Изучать и описывать их полезно, но ожидать строгого календарного плана, пожалуй, не стоит.
Говорят: история умеет хранить свои тайны. Справедливости ради добавим: способна она порой и проговариваться. И при всем стремлении, возникающем время от времени кое у кого, вытравить из нее нечто нежелательное, оно то и дело будет выглядывать наружу этими «проговорками» истории, порождая в людях вопросы и жажду дать на них ответ. Попробуем и мы пробиться сквозь бастионы одной величественной Тайны, пронзающей собою два десятка веков.
Эта книга для людей которым хочется лучше понять происходящее в нашем мире в последние годы. Для людей которые не хотят попасть в жернова 3-ей мировой войны из-за ошибок и амбиций политиков. Не хотят для своей страны судьбы Гитлеровской Германии или современной Украины. Она отражает взгляд автора на мировые события и не претендуют на абсолютную истину. Это попытка познакомить читателя с альтернативной мировой масс медиа точкой зрения. Довольно много фактов и объяснений автор взял из открытых источников.
"Ладога" - научно-популярный очерк об одном из крупнейших озер нашей страны. Происхождение и географические характеристики Ладожского озера, животный и растительный мир, некоторые проблемы экономики, города Приладожья и его достопримечательности - таковы вопросы, которые освещаются в книге. Издание рассчитано на широкий круг читателей.
Комплект из 16 открыток знакомит читателя с отдельными животными, отличающимися наиболее типичными или оригинальными способами пассивной обороны. Некоторые из них включены в Красную книгу СССР как редкие виды, находящиеся под угрозой исчезновения и поэтому нуждающиеся в строгой охране. В их числе, например, белая чайка, богомол древесный, жук-бомбардир ребристый, бабочки-медведицы, ленточницы, пестрянки. Художник А. М. Семенцов-Огиевский.
О друзьях наших — деревьях и лесах — рассказывает автор в этой книге. Вместе с ним читатель поплывет на лодке по Днепру и увидит дуб Тараса Шевченко, познакомится со степными лесами Украины и побывает в лесах Подмосковья, окажется под зеленым сводом вековечной тайги и узнает жизнь городских парков, пересечет Белое море и даже попадет в лесной пожар. Путешествуя с автором, читатель побывает у лесорубов и на плотах проплывет всю Мезень. А там, где упал когда-то Тунгусский метеорит, подивится чуду, над разгадкой которого ученые до сих пор ломают головы.
Давайте совершим путешествие вместе с наукой в далёкое прошлое, чтобы прийти к тому времени, когда зарождалась жизнь на Земле, и узнать, как это совершалось. От такого путешествия станет крепче уверенность в силе науки, в силе человеческого разума, в нашей собственной силе.
Если вы сомневались, что вам может пригодиться математика, эта книга развеет ваши сомнения. Красота приведенных здесь 10 уравнений в том, что пронизывают все сферы жизни, будь то грамотные ставки, фильтрование значимой информации, точность прогнозов, степень влияния или эффективность рекламы. Если научиться вычленять из происходящего данные и математические модели, то вы начнете видеть взаимосвязи, словно на рентгене. Более того, вы сможете управлять процессами, которые другим кажутся хаотичными. В этом и есть смысл прикладной математики. На русском языке публикуется впервые.
В книге рассказывается о том, как на протяжении нескольких столетий ученые пытались выяснить, почему ночью темно. Оказывается, этот вопрос связан с самым общим устройством нашей Вселенной — с тем, конечна она во времени и в пространстве или бесконечна, расширяется ли она на самом деле и из чего состоит. В книге подробно обсуждаются основные наблюдательные факты, лежащие в основе современной космологии, и история их открытия.Для всех, кто интересуется астрономией и космологией — от старшеклассников до специалистов в других областях науки.
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.
Если упражнения полезны, почему большинство их избегает? Если мы рождены бегать и ходить, почему мы стараемся как можно меньше двигаться? Действительно ли сидячий образ жизни — это новое курение? Убивает ли бег колени и что полезнее — кардио- или силовые тренировки? Дэниел Либерман, профессор эволюционной биологии из Гарварда и один из самых известных исследователей эволюции физической активности человека, рассказывает, как мы эволюционировали, бегая, гуляя, копая и делая другие — нередко вынужденные — «упражнения», а не занимаясь настоящими тренировками ради здоровья. Это увлекательная книга, после прочтения которой вы не только по-другому посмотрите на упражнения (а также на сон, бег, силовые тренировки, игры, драки, прогулки и даже танцы), но и поймете, что для борьбы с ожирением и диабетом недостаточно просто заниматься спортом.