Отличная квантовая механика - [18]
Этот эффект показан на рис. 1.5. Когда длина линии связи невелика, частота получения надежных битов (secure bit rate), отфильтрованных Алисой и Бобом (пунктирные линии), равна частоте получения фотонов Бобом (сплошные линии), умноженной на некоторый постоянный коэффициент. Но когда частота их получения снижается настолько, что доля ошибок, связанных с темновым счетом, становится значимой, число надежных битов начинает падать быстрее, а протокол усиления секретности становится все менее эффективным. Когда число фотонов, доходящих до Боба, падает ниже некоторого критического уровня, соответствующего доле ошибок в 11 %, передача перестает быть надежной.
Упражнение 1.21. Полагая, что у Алисы есть идеальный источник единичных фотонов, постройте примерный график количества фотонов, получаемых Бобом, а также количества отфильтрованных битов секретного ключа в секунду в зависимости от расстояния передачи. На основании этого оцените максимальное возможное расстояние безопасной связи при следующих параметрах:
• потери фотонов в оптоволоконной линии: β = 0,05 км>–1;
• частота эмиссии фотонов источником Алисы: n>0 = 2 × 10>7 и 2 × 10>10 фотонов в секунду;
• квантовая эффективность фотонных детекторов: η = 0,1;
• частота темновых срабатываний, синхронизированных с фотонами Алисы[27], в каждом из детекторов Боба: 𝑓>d = 10 с>–1.
Ответ: см. рис. 1.5.
Дальность защищенной квантовой связи можно улучшить, повысив производительность источника фотонов на стороне Алисы или снизив частоту темновых срабатываний детектора. Однако это не приведет к принципиальному улучшению ситуации: экспоненциальная природа закона Бугера — Ламберта — Бера в любом случае ограничивает квантовую связь расстояниями, не превышающими несколько сотен километров. В условиях упр. 1.21 повышение производительности источника на три порядка позволит увеличить дистанцию всего в 1,7 раза (рис. 1.5).
Чтобы преодолеть этот предел — и создать «квантовый интернет», который пересек бы океаны и со временем покрыл бы своей сетью всю планету, — нам потребуется принципиально иная технология. Про эту технологию, известную как квантовый повторитель, речь пойдет в конце главы 2.
1.7. Операторы в квантовой механике
Теперь мы переходим к обсуждению линейных операторов, представляющих собой ключевой элемент квантовой физики[28]. Они играют двоякую роль. Прежде всего операторы описывают эволюцию: с течением времени квантовые состояния изменяются, и это изменение математически выражается операторами. Второе, несколько менее очевидное, приложение линейных операторов состоит в формальном описании квантовых измерений. В этом разделе мы начнем с первой их роли.
Упражнение 1.22. Найдите матрицу оператора |+⟩⟨—| в каноническом базисе и базисе {|R⟩, |L⟩}.
Упражнение 1.23. Найдите в каноническом базисе матрицу линейного оператора Â, отображающего
a) |H⟩ на |R⟩ и |V⟩ на 2 |H⟩;
b) |+⟩ на |R⟩ и |—⟩ на |H⟩.
Примером физической операции, которую можно связать с квантовым оператором, может служить волновая пластинка, изменяющая состояние поляризации фотона. Чтобы рассчитать этот оператор, мы должны принять некоторое соглашение. Как сказано в разд. В.3, волновая пластинка изменяет относительную фазу необыкновенной (параллельной оптической оси) и обыкновенной (перпендикулярной оптической оси) поляризаций на угол ∆ϕ, который равен π для полуволновой пластинки и π/2 для четвертьволновой. Кроме того, она вводит общий сдвиг фазы для всей волны.
Эти оптические фазовые сдвиги в применении к единичному фотону превращаются в квантовые фазовые сдвиги. Общим фазовым сдвигом, одинаковым для всех компонентов поляризации, можно пренебречь (см. разд. 1.3). Мы, однако, должны договориться, как с ним обращаться в наших выкладках. Будем считать, что волновая пластинка не дает фазового сдвига на обыкновенный компонент поляризации, тогда как необыкновенный ее компонент претерпевает фазовый сдвиг ∆ϕ. Иными словами, волновая пластинка с оптической осью, ориентированной под углом θ к горизонтали, производит следующие преобразования:
Упражнение 1.24. Найдите в каноническом базисе матрицы операторов, связанных с полуволновой и четвертьволновой пластинками с оптической осью, ориентированной под углом α к горизонтали, при помощи следующего пошагового алгоритма:
a) Напишите оператор Â>∆ϕ, связанный с преобразованием (1.4), в виде уравнения (A.25).
b) Выразите каждый бра- и кет-вектор в ответе пункта a) в матричной форме в каноническом базисе и вычислите матрицу результирующего оператора.
c) Подставьте значения ∆ϕ для полуволновой и четвертьволновой пластинок.
Ответ:
Упражнение 1.25. Пользуясь результатом предыдущего упражнения, убедитесь в верности следующих утверждений:
a) при применении к фотону, линейно поляризованному под углом θ, полуволновая пластинка с оптической осью, ориентированной под углом α, дает фотон, линейно поляризованный под углом 2α — θ, в соответствии с рис. В.4;
b) четвертьволновая пластинка с оптической осью, ориентированной горизонтально или вертикально, превращает фотон с круговой поляризацией в фотон с поляризацией под ±45° и наоборот в соответствии с упр. В.9.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.