Отличная квантовая механика - [19]
Отступление 1.6. Как получить фотон?
Вот самый очевидный, но неверный ответ на этот вопрос: использовать ослабленный сигнал лазера. Предположим, у нас есть импульсный лазер со средней мощностью P и частотой повторения импульсов R. Тогда каждый импульс лазера содержит n = P/Rℏω фотонов, где ω — частота излучения лазера. Поэтому можно, казалось бы, разместить на пути лазерного луча ослабитель (темное стекло), который уменьшал бы его мощность в n раз, так чтобы каждый импульс содержал ровно один фотон.
Эти рассуждения ошибочны, поскольку не учитывают, что реальное число фотонов в импульсах, проходящих через ослабитель, будет стохастическим в соответствии с распределением Пуассона (см. разд. Б.3). Хотя в среднем, возможно, действительно получится один фотон на импульс, это не означает, что каждый импульс будет содержать ровно один фотон. Иногда фотонов в импульсе вообще не окажется, иногда там будет один фотон, иногда два или больше.
Несмотря на это возражение, в некоторых случаях ослабленный лазер служит полезной заменой настоящего источника фотонов. В частности, в практической квантовой криптографии лазер ослабляется до чрезвычайно низкого уровня, так чтобы вероятность того, что каждый импульс содержит хотя бы один фотон, стала весьма малой. Тогда вероятность содержания в импульсе более одного фотона пренебрежимо мала, и безопасность связи не страдает.
Чтобы гарантировать генерацию единичного фотона «по требованию», нужны более хитроумные схемы. Например, единичный двухуровневый атом, будучи возбужденным, автоматически вернется в основное состояние, излучив при этом ровно один фотон. Практическая реализация такого источника, однако, представляет серьезные трудности. Во-первых, необходимо поймать единичный атом и неподвижно удерживать его в ходе всего эксперимента. Во-вторых, фотон будет излучен в случайном направлении. Чтобы заставить атом излучать в каком-то конкретном направлении, физики иногда окружают его резонатором Фабри — Перо. Этот метод развился в целое научное направление, называемое квантовой электродинамикой в резонаторе.
Чтобы обойти необходимость в захвате атома, эксперименты проводят с твердотельными атомоподобными источниками, такими как единичные дефекты кристаллической решетки или квантовые точки. Идея та же: взять объект, в котором возможен только один квант возбуждения с определенной энергией. Пока я пишу эту книгу, подобные эксперименты стремительно развиваются в сторону большей эффективности и лучшей воспроизводимости получаемых фотонов.
Многие физики используют мощный альтернативный подход к приготовлению единичных фотонов — спонтанное параметрическое рассеяние (spontaneous parametric down-conversion). Это нелинейный квантово-оптический процесс, который происходит, когда сильный лазерный луч проходит сквозь кристалл с нелинейными оптическими свойствами. Каждый фотон луча может при этом спонтанно расщепиться на два менее энергичных фотона. Данное событие имеет очень низкую вероятность. Однако у него есть фундаментальное свойство: в нем каждый раз рождается именно пара фотонов. Так что если мы зарегистрируем один из этих фотонов, то будем знать наверняка, что появилась также и его копия, — и можем с ней экспериментировать.
Такое устройство называется источником объявленных одиночных фотонов (heralded single photon source), потому что обнаружение одного фотона «объявляет» о присутствии второго. Этот источник не способен производить фотоны «по требованию»; он только сигнализирует о появлении спонтанно испущенного фотона, не разрушая его. Поэтому его применение в квантовых технологиях ограничено. Однако, поскольку у нас пока нет надежного способа приготовления единичных фотонов по заказу, источники объявленных фотонов широко используются в экспериментальных квантово-оптических исследованиях.
Упражнение 1.26.Операторы Паули[29] определяются как
или в матричной записи
Предложите реализацию этих операторов средствами волновых пластинок.
Подсказка: найдите состояния, на которые операторы Паули отображают |H⟩ и |V⟩, затем используйте упр. 1.24.
Упражнение 1.27. Матрица оператора Адамара Ĥ в каноническом базисе равна:
a) Выразите этот оператор в нотации Дирака.
b) На какие состояния Ĥ отображает |H⟩ и |V⟩?
c) Как можно реализовать этот оператор с помощью волновых пластинок?
1.8. Проекционные операторы и ненормированные состояния
Ранее мы постулировали, что физические квантовые состояния имеют норму 1. Давайте теперь расширим это соглашение. Норма вектора состояния |a⟩ может быть меньше единицы; это означает, что состояние |a⟩ существует не точно, а с вероятностью, равной квадрату его нормы:
pr>a = ║ |a⟩ ║>2 = ⟨a|a⟩. (1.8)
Такие состояния называют ненормированными.
Рассмотрим проективное измерение состояния |ψ⟩ в базисе {|𝑣>i⟩}. Каноническая формулировка постулата об измерениях гласит, что измерение превращает |ψ⟩ в одно из |𝑣>i⟩ с вероятностью (1.3). Воспользовавшись расширенным соглашением, мы можем сказать, что это измерение превращает |ψ⟩ в набор ненормированных состояний
Каждое пропорционально |𝑣>i⟩, но вероятность его существования равна квадрату его нормы:Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.