Новый взгляд на мир. Фрактальная геометрия - [7]
Как мы уже говорили, математика евклидова пространства является одним из ключевых элементов современной научной мысли, причем это в равной степени относится и к естественным дисциплинам, и к гуманитарным наукам и искусству. По Евклиду, математическое пространство — это пустое и абсолютное пространство, в котором формируется реальность, в том числе художественная.
В этом пространстве действуют законы перспективы, что было бы невозможно без математики Евклида, в которой описывается линейное пространство.
Фреска «Афинская школа» Рафаэля, на которой изображены практически все греческие мудрецы — известнейший пример использования перспективы. На фреске под крышей грандиозного архитектурного сооружения изображены представители классической философии, собравшиеся вместе. На этом шедевре Рафаэля время словно остановилось для мудрецов из разных эпох. И среди них наш старый знакомый Евклид. Рафаэль изобразил его в правой части картины. Евклид, согнувшись, что-то объясняет ученикам, рисуя дуги циркулем на маленькой доске. На фреске также есть и Пифагор, он сидит в противоположном углу и что-то пишет на табличке. Пифагор и Евклид изображены в разных сторонах нижней части картины — именно там, где начинаются воображаемые линии, сходящиеся к центру композиции, где расположены Платон и Аристотель. Эти линии теряются на горизонте и уходят в бесконечность.
«Афинская школа». Помимо Евклида и Пифагора, на фреске Рафаэля также изображены Зенон Китийский, Эпикур, Анаксимандр, Аверроэс, Александр Великий, Ксенофонт, Гапатия, Парменид, Сократ, Диоген Синопский, Плотин, Архимед, Заратустра, Клавдий Птолемей, Протоген и сам Рафаэль. Художник вывел себя в образе Апеллеса.
Формальные принципы и основы проективной геометрии создал Жерар Дезарг (1591–1661). Этот французский математик заметил, что круг в перспективе выглядит как эллипс, а тень, которую отбрасывает на стену круглый предмет, может принимать форму круга, эллипса, параболы или ветви гиперболы в зависимости от угла наклона предмета. (Четыре упомянутые кривые — окружность, эллипс, парабола и гипербола — называются коническими сечениями.) Это означает, что проекция предмета (в нашем примере это тень) преобразует одну фигуру в другую[9].
На основе этих наблюдений Дезарг ввел два новых понятия: бесконечно удаленную точку, называемую также несобственной точкой, и бесконечно удаленную прямую, также называемую несобственной прямой. На плоскости существует бесконечно много несобственных точек, каждой из которых соответствует свое направление. Все такие точки образуют бесконечно удаленную прямую. Аналогично в пространстве существует бесконечно много несобственных прямых, которые в совокупности образуют бесконечно удаленную плоскость. Согласно модели Дезарга, две параллельные прямые пересекаются в бесконечно удаленной точке — несобственной точке, определяемой углом наклона прямой. Иными словами, каждому углу наклона можно поставить в соответствие бесконечно удаленную точку.
Аналогично пересечением двух параллельных плоскостей будет бесконечно удаленная, то есть несобственная прямая. Следовательно, можно сказать, что две прямые, принадлежащие одной плоскости, всегда имеют общую точку (собственную или несобственную), а две плоскости пространства всегда имеют общую прямую (собственную или несобственную). Парабола будет эллипсом с несобственной точкой, гипербола — эллипсом, но уже с двумя несобственными точками. Отсюда следует принцип двойственности, который выполняется для всех теорем, устанавливающих отношение между точками и прямыми. В соответствии с этим принципом если в теореме проективной геометрии мы заменим слово «точка» на «плоскость», а слова «проходит через» — на «пересекаются в», то полученная теорема также будет верной. Благодаря этому принципу теорема «через любые две несовпадающие точки можно провести единственную прямую» имеет парную теорему: «Две несовпадающие прямые пересекаются на единственной плоскости».
Согласно новым принципам, разработанным Дезаргом, конические сечения отличаются друг от друга лишь числом несобственных точек.
Эта теория стала принципиально новой. Было нетрудно представить, что эллипс (замкнутая кривая) в перспективе будет выглядеть как окружность. Например, Дюрер точка за точкой построил все возможные сечения прямого конуса плоскостью. Тем не менее на одном из его рисунков можно увидеть, что фигура, которая в теории должна быть эллипсом, изображена в форме яйца, как будто бы Дюрер не верил своим глазам и ожидал, что по мере приближения к вершине конуса кривая будет более вытянутой по сравнению с обычным эллипсом. Напротив, казалось невозможным, что окружность в перспективе может принимать форму незамкнутой кривой с ветвями, уходящими в бесконечность, то есть форму параболы. Также казалось невозможным, что окружность в перспективе может разрываться подобно гиперболе, которая имеет две отдельные ветви.
Чтобы лучше понять, как окружность в перспективе принимает форму разных конических сечений, представим, что художник хочет изобразить на картине часть бассейна круглой формы. Художник смотрит на бассейн через воображаемое окно (именно проекцию изображения и запечатлеет на картине художник). В зависимости от угла наклона этого окна проекции будут принимать форму различных конических сечений. Мы поступим иначе: зафиксируем плоскость окна перпендикулярно полу и будем изменять положение наблюдателя и окна относительно бассейна.
Слово «паразит» ни у кого не вызывает положительных эмоций. Паразитами называют тех, кто живет за чужой счет, — идет ли речь о людях или патогенных организмах. Тем не менее, само существование паразитов будоражит наше воображение: нас поражает их способность адаптации к меняющимся внешним условиям, их сложный жизненный цикл, их «модус операнди», не имеющий аналогов в животном мире. Эта книга максимально доступным языком, с использованием множества примеров рассказывает о том, чем занимается наука паразитология.
Наш прекрасный мир и его чудесная природа обрели свой вид только благодаря грибам, без которых немыслима ни одна экосистема. Без них не было бы ни наших лесов, ни нашего климата, да и, возможно, самой жизни. Грибы вездесущи, и, если использовать их правильно, они могут помочь нам в совершенно неожиданных областях. Грибы – партнеры, грибы – мастера утилизации отходов, грибы – чудо-лекарство, грибы – источник страсти… Известный австрийский биолог и специалист по охране природы, автор более 20 книг Роберт Хофрихтер, обобщая научные данные и собственный профессиональный и жизненный опыт, расскажет в этой книге о многом, чего мы до сих пор не знали о грибах.
Книга рассказывает о прошлом, настоящем и будущем самых, быть может, загадочных созданий на Земле. О том, как выглядели древнейшие, ранние киты, как эти обитавшие на суше животные миллионы лет назад перешли к водному образу жизни, мы узнаем по окаменелостям. Поиск ископаемых костей китов и работа по анатомическому описанию существующих видов приводила автора в самые разные точки планеты: от пустыни Атакама в Чили, где обнаружено самое большое в мире кладбище древних китов — Серро-Баллена, до китобойной станции в Исландии, от арктических до антарктических морей. Киты по-прежнему остаются загадочными созданиями.
Птичьи яйца – важная составляющая нашей культуры, символ плодовитости, неотъемлемый атрибут религиозных верований и мифологических представлений. Издревле за яйцами охотились коллекционеры и зачастую рисковали жизнью, взбираясь по скалистым склонам в поисках уникальных экземпляров. Казалось бы, яйцо устроено очень просто – но эта простота лишь кажущаяся. Один из ведущих орнитологов современности, известный британский популяризатор науки, обладатель множества наград за исследования в области поведенческой экологии и орнитологии, Тим Беркхед делится своими уникальными знаниями и раскрывает множество тайн этого настоящего чуда природы.
Как происходит дыхание? Почему нам порой не хватает воздуха и какое отношение имеет к этому маленькая Русалочка? Как наши эмоции влияют на дыхание? Почему мы кашляем, но не чувствуем боли в дыхательных путях? Может ли вырасти новое легкое? Как самый большой орган нашего тела защищается от микробов и вредных веществ. И самое главное: что мы можем предпринять, чтобы этот чудесный орган сохранял свою работоспособность всю жизнь? Обо всем этом увлекательно и захватывающе повествует специалист по легким Кай-Михаэль Бе. Для широкого круга читателей.
Книга основателя Игнобелевской (Шнобелевской) премии — сборник эссе о самых разных исследованиях вполне почтенных ученых. Только вот предмет этих исследований заставляет читателей сначала рассмеяться, а потом задуматься о весьма серьезных вещах. Почему чаще всего крадут книги по этике? Как найти оптимальный способ нарезки ветчины с помощью математики? Отчего танцоры в Вегасе получают большие чаевые в определенные месяцы? И какое ухо лучше распознает ложь — правое или левое? Абрахамс рассказывает о подобных довольно странных исследованиях в области биологии, физики, математики и других наук с большим юмором, иронией и — глубоким знанием человеческой природы.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.