Новый взгляд на мир. Фрактальная геометрия - [5]
* * *
Когда основные процессы, происходящие в городах, меняются, можно увидеть, как изменяется исходная структура городов. Цель подобной перестройки — избежать того, что изначально было желаемым: если раньше преобладал взаимообмен между малыми группами, то теперь чаще наблюдаются большие скопления людей и высокие скорости. Чтобы не допустить коллапса, создаются кольцевые магистрали и новые районы, разбитые на квадраты. Являются ли «простые» геометрические фигуры идеальными? Будет ли подобная планировка оптимальной?
Форма городов является результатом длительного строительства, на которое влияет географическое местоположение. В процесс строительства вмешивается множество людей, принимаются решения, в результате которых появляются объекты, не подчиняющиеся евклидовой геометрии. Необходимо многомерное моделирование, то есть рассмотрение города в различных масштабах и с разных точек зрения.
Если мы посмотрим на город в разных масштабах, то увидим, что некоторые фигуры будут повторяться (итерироваться). Это доказывает, что сеть улиц города подобна ветвям дерева: и улицы, и ветви дерева формируются итеративно. Это дает основания полагать, что в этих процессах сочетаются итеративные операции и случайные события.
Структура кварталов современных западных городов отражает рациональность и порядок, на всей территории безраздельно господствует евклидова логика. Мы всегда пытаемся применить фигуры евклидовой геометрии (окружности, квадраты, кубы) к реальности, но эти фигуры — лишь математическая абстракция, следовательно, их ограничивают возможности нашего интеллекта. В итоге реальность сопротивляется подобному упрощению и упорядочиванию и восстанавливает свою сложную природу (совокупность человеческих, экономических, исторических интересов), отражая тем самым неравномерность взаимоотношений своих составных частей в различном масштабе.
Чтобы понять неравномерную, беспорядочную реальность, нужна альтернативная геометрия, в основе которой будут находиться именно эти взаимоотношения, а не идеальные геометрические фигуры.
Серия изображений структуры города, на которых заметно подобие в различных масштабах.
>(Источник: Лаура Элизабет Виолант.)
Несмотря на все вышесказанное, когда нужно провести определенные границы, а территории недостаточно, то земельным участкам, как правило, придают форму прямоугольников или четырехугольников, как, например, при межевании поля перед
Кажется, что четырехугольники использовались всегда. Действительно, это одна из наиболее часто применяемых фигур наряду с кругом, спиралью и крестом. Некоторые исследователи пытались найти доказательства тому, что знания геометрии являются врожденными и не требуют знания языка или культуры. Это было подтверждено на примере племени мундуруку, живущего в Амазонии. Племя живет изолированно от нашей цивилизации на протяжении четырех сотен лет, со времени прибытия в Южную Америку европейских завоевателей. Знания геометрии, которыми владеют индейцы этого племени, доказывают, что человек обладает геометрической интуицией, которая не зависит от обучения, умения работать с картами и графическими символами и даже от наличия геометрических терминов в языке. Это открытие произвело переворот в неврологии, антропологии, психологии и герменевтике: ведь раньше было невозможно определить, необходим ли язык для познания реального мира.
В ходе современных лингвистических исследований было обнаружено, что существуют универсальные общие для всех языков семантические элементы, а также базовые языковые универсалии, характерные для устной речи. Означает ли это, что помимо одинаковых элементов языка существуют геометрические или арифметические универсалии, единые для всех людей и не зависящие от приобретенных знаний? Являются ли эти знания врожденными, унаследованными? Заложены ли они в нас генетически подобно языковым универсалиям, как утверждает выдающийся американский лингвист и философ Ноам Хомский? В 1957 г. в возрасте всего 29 лет Хомский совершил переворот в теоретической лингвистике, опубликовав работу «Синтаксические структуры». Ранее считалось, что язык, подобно любым другим навыкам, приобретается через обучение. Хомский выдвинул идею о существовании «ментального органа» языка — части мозга, благодаря которой человек обучается языку и использует его практически интуитивно. Кроме этого, он доказал, что существуют общие абстрактные принципы грамматики, присущие каждому человеческому языку, и выдвинул гипотезу о существовании универсальной грамматики.
Туземцы племени мундуруку, какими их увидел французский художник и фотограф Эркюль Флоранс в 1828 г.
Примерно к 323 г. до н. э. слава греческой науки распространилась по всем государствам, покоренным Александром Македонским. Неудивительно, что египетский царь Птолемей I, создав в Александрии крупный культурный центр, привлек туда афинских ученых. Евклид был назначен главой математической школы.
Первым из философов упоминает об Евклиде Прокл, согласно которому Евклид родился приблизительно в 300 г. до н. э. Относительно точности этой даты имеются сомнения, но достоверно известно, что именно Евклид систематизировал математику того времени, дополнил некоторые труды и привел неопровержимые доказательства утверждений, недостаточно подробно изложенных его предшественниками. Он обобщил и систематизировал геометрию своего времени. До Евклида математика представляла собой набор разрозненных вычислений. Благодаря его усилиям она превратилась в совокупность взаимосвязанных систем.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.