Новый взгляд на мир. Фрактальная геометрия - [39]
Лоренц опубликовал свои открытия в 1963 г. в документе, предназначенном для Нью-Йоркской академии наук, в котором привел комментарий, оставленный его коллегой-метеорологом: «Если эта теория верна, то взмах крыльев чайки может навсегда изменить погоду». Позднее, согласно все тому же Лоренцу, когда он не мог подобрать название для речи, с которой должен был выступить на заседании Американской ассоциации содействия развитию науки в 1972 г., его коллега, Фелипе Мерилис, предложил такое название: «Может ли взмах крыльев бабочки в Бразилии вызвать торнадо в Техасе?».
В любом случае нет никаких сомнений, что Лоренцу был известен следующий отрывок из «Силы слов» Эдгара По:
«К примеру, когда мы жили на Земле, то двигали руками, и каждое движение сообщало вибрацию окружающей атмосфере. Эта вибрация беспредельно распространялась, пока не сообщала импульс каждой частице земного воздуха, в котором с той поры и навсегда нечто было определено единым движением руки. Этот факт был хорошо известен математикам нашей планеты. Они достигали особых эффектов при сообщении жидкости особых импульсов, что поддавалось точному исчислению — так что стало легко определить, за какой именно период импульс данной величины опояшет земной шар и окажет воздействие (вечное) на каждый атом окружающей атмосферы».
Суть открытия Лоренца, которое позднее получило название «эффект бабочки», такова: существует вероятность, что малейшее изменение начальных условий системы, подобное движению воздуха, вызванному взмахом крыла бабочки, по отношению к климату Земли может повлечь за собой цепочку последствий, которые окажут существенное влияние на всю систему[27].
Хотя выражение «бабочка, которая машет крыльями» дошло до наших дней, о местонахождении бабочки и последствиях взмаха ее крыльев ведется обширная дискуссия, которую мы не будем воспроизводить в этой книге.
Если динамическая система будет функционировать достаточно долго, в ее фазовом пространстве появится множество точек, которое называется аттрактором. Аттрактором может быть точка, кривая, поверхность или какое-то сложное множество неправильной структуры, которое называют странным аттрактором.
Фрактальный характер хаоса проявляется в странных аттракторах. Если изобразить орбиты странного аттрактора и последовательно увеличивать их, то можно заметить самоподобие, характерное для фракталов.
Иногда динамические системы зависят от определенного параметра, благодаря чему их проще использовать при моделировании реальных систем. Значение этого параметра особенно важно, чтобы понять, как рождается хаос. При определенных значениях параметра динамическая система демонстрирует нормальное поведение, но иногда даже после малейших изменений появляется хаос. Особенно важную роль играет изучение этих систем и параметра, определяющего их поведение, с целью выявить точки перехода, в которых система начинает проявлять хаотические свойства.
Существование подобных динамических систем, в которых сосуществуют порядок и хаос, заставляет нас признать, что они тесно взаимосвязаны: в любой упорядоченной системе всегда явно или неявно присутствует хаос, а в любой хаотической системе явно или неявно присутствует порядок. Если система демонстрирует все более хаотическое поведение или, напротив, становится стабильной и упорядоченной, она потенциально может снова изменить свое поведение.
Примером того, как хаотическая система неявно является упорядоченной, может служить солитон Джона Рассела. Если мы бросим камень в пруд, на поверхности воды возникнут небольшие волны, которые вскоре исчезнут. Однако в 1834 г. шотландский ученый Джон Скотт Рассел (1808–1882) заметил крайне странное явление: в некоторых ситуациях волны порождали новую волну со своими характеристиками, и эта новая уединенная волна, так называемый солитон, могла проходить сотни километров, не теряя формы. Рассел несколько километров следовал за подобной волной вдоль канала и констатировал, что она шла против течения, не ослабевая. Солитон Рассела — это физическое явление, при котором сочетание дисперсии и нелинейности порождает упорядоченность.
На практике солитон Рассела используется для повышения качества передачи данных в оптоволоконных сетях. Так, в 1988 г. удалось передать солитон на расстояние свыше 4 ООО км.
Переход от ламинарного к турбулентному течению потока — один из наиболее наглядных примеров того, каким путем может рождаться хаос. В эксперименте Тэйлора-Куэтта поток проходит между двумя концентрическими цилиндрами, вращающимися с разной скоростью. С ростом скорости вращения внутреннего цилиндра поток перестает быть равномерным и разбивается на множество водоворотов. Еще более заметные изменения происходят, когда внешний и внутренний цилиндры вращаются в противоположных направлениях. В этом случае в потоке появляются спирали и завихрения. С изменением скорости вращения обоих цилиндров открывается своеобразный ящик Пандоры: в потоке появляются волнистые и турбулентные спирали. Результаты будут отличаться в зависимости от того, скорость какого цилиндра будет увеличена первой.
Все мы знаем, насколько важны для правильной диагностики анализы крови. Однако когда видим результаты, часто не понимаем, что они означают. Благодаря этой книге вы научитесь трактовать результаты анализов и делать конкретные выводы, узнаете, на что обращать внимание, как снизить риск развития заболеваний и выработать полезные привычки для поддержания здоровья всех систем организма.
Второе, переработанное и дополненное, издание книги, удостоенной в 1955 году второй премии на конкурсе на лучшую научно-художественную и научно-популярную книгу для детей. Рассказ о природе Ставрополья, ее красоте и богатстве, о возможностях изысканий и открытий в природе родного края. Книга содержит интересные загадочные рассказы, викторины, удивительные рассказы о природе. Она учит любить и охранять природу, воспитывает навыки исследования и успешного использования природных богатств края.
Книга раскрывает удивительный мир грибов, богатство их форм и разновидностей. На ее страницах — наши давние знакомцы, постоянные объекты 'тихой охоты' в лесу — шляпочные грибы, а также менее известные — грибы микроскопические. Читатель узнает о том, какой ущерб причиняют грибы сельскому хозяйству, вызывая болезни растений и животных; ознакомится с их полезными свойствами, широко используемыми в микробиологической промышленности при производстве кормовых дрожжей, аминокислот, витаминов, ферментных препаратов, антибиотиков.
В книге дается описание природы, городов и поселков Огненной Земли и Патагонии, жизни овцеводов, лесорубов, рыбаков и моряков, рассказывается об истории индейских племен, приводятся различные гипотезы и теории их происхождения, говорится о сырьевых богатствах этой далекой территории и о их использовании. [Адаптировано для AlReader].
Птичьи яйца – важная составляющая нашей культуры, символ плодовитости, неотъемлемый атрибут религиозных верований и мифологических представлений. Издревле за яйцами охотились коллекционеры и зачастую рисковали жизнью, взбираясь по скалистым склонам в поисках уникальных экземпляров. Казалось бы, яйцо устроено очень просто – но эта простота лишь кажущаяся. Один из ведущих орнитологов современности, известный британский популяризатор науки, обладатель множества наград за исследования в области поведенческой экологии и орнитологии, Тим Беркхед делится своими уникальными знаниями и раскрывает множество тайн этого настоящего чуда природы.
Книга основателя Игнобелевской (Шнобелевской) премии — сборник эссе о самых разных исследованиях вполне почтенных ученых. Только вот предмет этих исследований заставляет читателей сначала рассмеяться, а потом задуматься о весьма серьезных вещах. Почему чаще всего крадут книги по этике? Как найти оптимальный способ нарезки ветчины с помощью математики? Отчего танцоры в Вегасе получают большие чаевые в определенные месяцы? И какое ухо лучше распознает ложь — правое или левое? Абрахамс рассказывает о подобных довольно странных исследованиях в области биологии, физики, математики и других наук с большим юмором, иронией и — глубоким знанием человеческой природы.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.