Новый взгляд на мир. Фрактальная геометрия - [37]

Шрифт
Интервал

2. Линейные — те, которые строятся с помощью аффинных преобразований. Фракталы этого типа содержат уменьшенные копии всей фигуры целиком, но видоизмененные с помощью линейных функций, как, например, лист папоротника Барнсли.

3. Самоподобные. Фракталы этого типа содержат уменьшенные копии фигуры целиком, видоизмененные с помощью нелинейных функций, как, например, множество Жюлиа.

4. Квазисамоподобные. Фракталы этой группы более или менее идентичны в различном масштабе. Такие фракталы содержат уменьшенные и деформированные копии всей фигуры целиком. Как правило, к этому типу относятся фракталы, определенные с помощью рекурсивных процедур, как, например, множество Мандельброта или фрактал Ляпунова.

5. Статистически самоподобные. Эти фракталы обладают меньшим уровнем самоподобия. В них присутствует какая-либо числовая или статистическая метрика, которая не изменяется в зависимости от масштаба. Сюда относятся случайные фракталы, например траектория броуновского движения, полет Леви, фрактальные пейзажи и броуновские деревья.


Природа не фрактальна

В книгах, посвященных фракталам, часто можно встретить утверждения вида «в природе существует множество фрактальных объектов». В действительности это не совсем так. Когда мы говорим, что, например, граница, дерево или венозная сеть являются фракталами, в действительности имеется в виду, что для них существуют фрактальные модели достаточно высокой точности. В реальном мире не существует фракталов, как не существует прямых или окружностей.

Однако математические модели, описывающие реальность, помогают нам лучше понять ее. Подобно тому как теория относительности описывает орбиту Меркурия точнее, чем ньютоновская механика, фрактальная геометрия описывает форму некоторых объектов точнее, чем геометрия Евклида. Возможно, она точнее описывает и динамику реальных процессов.

Множество Мандельброта содержит бесконечно много деталей, и его рассмотрению в различных масштабах можно посвятить всю жизнь. Точно так же мы можем изучать и реальный мир, начав с молекул, затем перейдя к атомам, а от них — к нейтронам и другим субатомным частицам. Возможно ли, что в один прекрасный день мы достигнем предела? Или же, подобно множеству Мандельброта, предела не существует и здесь? Этого никто не знает.


Избавляемся от мечты о детерминизме

В словарях хаос определяется как «беспорядочная материя, неорганизованная стихия», существовавшая в мировом пространстве до образования известного человеку мира. Однако у ученых есть что добавить к этому определению.

Математическая теория хаоса является частью точной науки. В ней нет места неточностям и неопределенности. Разумеется, название теории хаоса восходит к традиционному смыслу этого слова, но хаос в математике — это не волк, а скорее овца в волчьей шкуре: он открывает нам дорогу в мир хаотичных структур и систем, которыми мы со временем научимся управлять.

Фрактальная геометрия и хаос тесно связаны друг с другом, и понять один из этих разделов математики без другого непросто. Фрактальная геометрия изучает самоподобные и парадоксальные фигуры, а теория хаоса изучает поведение непредсказуемых процессов и занимается поисками упорядоченности в них. Оба этих раздела математики, которые бурно развиваются в последние 20 лет, связаны между собой: среди хаоса формируются фракталы, которые можно использовать в попытках дать определение хаосу. Где же находится точка пересечения теории хаоса и фрактальной геометрии? Теория хаоса возникла в так называемой теории динамических систем. Любая динамическая система состоит из двух частей: состояния (обычно выражается через координаты) и динамики (изменения состояния с течением времени). Эволюцию динамической системы можно представить движением точек в координатном пространстве, каждой точке которого соответствует некое состояние системы. Это пространство называется фазовым пространством. Если эволюция системы подчиняется некоторому закону или законам (даже если их природа неизвестна), они неизменны с течением времени и последующее состояние можно описать через предыдущее, то речь идет о так называемой детерминированной динамической системе. Определение «детерминированная» означает, что эволюцию системы можно предсказать.

Один из самых удивительных результатов современной физики заключается в том, что предсказать поведение многих детерминированных динамических систем через длительные промежутки времени невозможно, так как на каждой итерации накапливаются ошибки. Подобные детерминированные динамические системы, которые очень чувствительны к относительно небольшим изменениям, называются хаотическими. Столь высокая чувствительность означает, что две возможные траектории перемещения точек, которые изначально расположены очень близко друг от друга, с течением времени могут очень сильно разойтись. То, что подобным поведением отличаются системы с большим количеством переменных, было известно давно. Однако, что удивительно, этой же особенностью обладают и очень простые системы.

В 1776 г. французский математик Пьер Симон Лаплас категорично заявил, что если бы ему были известны скорость и положение всех частиц во Вселенной в определенный момент времени, то он смог бы с идеальной точностью узнать прошлое и предсказать будущее. Свыше 100 лет это утверждение казалось верным. Из него следует, что свободы воли не существует, так как все детерминировано, по меньшей мере в теории. Такое видение мира позднее стало называться детерминизмом Лапласа. Применительно к науке оно означает, что если нам известны законы, которым подчиняется некое явление, известны начальные условия и даны средства расчетов, то мы можем с полной уверенностью предсказать будущее состояние изучаемой системы.


Рекомендуем почитать
Антикитерский механизм: Самое загадочное изобретение Античности

Это уникальное устройство перевернуло наши представления об античном мире. Однако история Антикитерского механизма, названного так в честь греческого острова Антикитера, у берегов которого со дна моря были подняты его обломки, полна темных пятен. Многие десятилетия он хранился в Национальном археологическом музее Греции, не привлекая к себе особого внимания.В научном мире о его существовании знали, но даже ученые не могли поверить, что это не мистификация, и поразительный механизм, использовавшийся для расчета движения небесных тел, действительно дошел до нас из глубины веков.


Технологии против человека

Технологии захватывают мир, и грани между естественным и рукотворным становятся все тоньше. Возможно, через пару десятилетий мы сможем искать информацию в интернете, лишь подумав об этом, – и жить многие сотни лет, искусственно обновляя своё тело. А если так случится – то что будет с человечеством? Что, если технологии избавят нас от необходимости работать, от старения и болезней? Всемирно признанный футуролог Герд Леонгард размышляет, как изменится мир вокруг нас и мы сами. В основу этой книги легло множество фактов и исследований, с помощью которых автор предсказывает будущее человечества.


Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Профиль равновесия

В природе все взаимосвязано. Деятельность человека меняет ход и направление естественных процессов. Она может быть созидательной, способствующей обогащению природы, а может и вести к разрушению биосферы, к загрязнению окружающей среды. Главная тема книги — мысль о нашей ответственности перед потомками за природу, о возможностях и обязанностях каждого участвовать в сохранении и разумном использовании богатств Земли.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


История астрономии. Великие открытия с древности до Средневековья

Книга авторитетного британского ученого Джона Дрейера посвящена истории астрономии с древнейших времен до XVII века. Автор прослеживает эволюцию представлений об устройстве Вселенной, начиная с воззрений древних египтян, вавилонян и греков, освещает космологические теории Фалеса, Анаксимандра, Парменида и других греческих натурфилософов, знакомит с учением пифагорейцев и идеями Платона. Дрейер подробно описывает теорию концентрических планетных сфер Евдокса и Калиппа и геоцентрическую систему мироздания Птолемея.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Том 6. Четвертое измерение. Является ли наш мир тенью другой Вселенной?

Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.