Новый взгляд на мир. Фрактальная геометрия - [35]
Множество Мандельброта во всем своем великолепии.
Область, расположенная между большой окружностью и кардиоидой, получила название «долина морского конька». В ней обитает множество фигур, которые соединены тысячами разных способов и по форме напоминают морского конька. По всей плоскости располагаются уменьшенные копии целого множества, связанные между собой нитями разной формы. Множество Мандельброта, по-видимому, является фракталом в том смысле, в котором мы ранее использовали это понятие, то есть обладает свойством самоподобия в различном масштабе наблюдений. Однако в действительности это не совсем так. При каждом увеличении мы видим все больше нитей, поэтому всегда можем определить степень увеличения изображения. Существуют серьезные сомнения относительно самоподобия множества Мандельброта. Если нам показать два изображения множества Жюлиа, мы не сможем определить их масштаб, в то время как сделать это для множества Мандельброта несложно. Поэтому множество Мандельброта считается почти самоподобным.
На рубеже XX–XXI вв. китайский математик Тан Лэй выполнил ряд системных исследований множества Мандельброта и его динамики. Некоторые результаты представлены в его книге «Множество Мандельброта: Тема с вариациями» (2000). Изображение множества Мандельброта, приведенное на предыдущей странице, поможет понять всю важность фракталов за пределами математического мира.
Как связано положение точки с в множестве Мандельброта и множество Жюлиа, при генерации которого использовалось это значение с? Это достоверно неизвестно. Можно заметить, что множество Мандельброта содержит всю информацию о форме всех множеств Жюлиа, уменьшенных и видоизмененных. Следовательно, оно является не просто средством классификации связных и несвязных множеств Жюлиа. Например, для всех значений с внутри кардиоиды множество Жюлиа будет напоминать деформированную окружность. Если точка, которой соответствует значение с, располагается внутри одной из касательных окружностей, множество Жюлиа будет разделено на доли. Если же эта точка располагается на одной из многочисленных нитей, то соответствующее множество Жюлиа будет разделено на несколько ветвей. В случае когда эта точка расположена на границе множества, соответствующее множество Жюлиа будет разделено на бесконечное число отдельных частей.
Изучив свойства множества Мандельброта более подробно, мы увидим, что внутри определенной касательной окружности число долей соответствующего множества Жюлиа всегда будет неизменным. Присвоив каждой доле соответствующее число и проанализировав полученные изображения, можно составить карту множества Мандельброта.
Множество Мандельброта и различные множества Жюлиа, рядом с которыми приведены соответствующие значения с, использованные при построении.
Создать целую вселенную, полную замысловатых узоров, цветов, улиток и драконов, можно не только с помощью последовательности квадратичных функций. Существует множество других итераций над комплексными числами, позволяющих создать особый фрактальный мир. Те примеры, с которыми вы успели ознакомиться, очень хорошо показывают, что сложная структура не обязательно строится по сложным правилам. Примеры этому можно найти и в природе. Достаточно вспомнить, что человечество во всем своем многообразии лиц имеет в своей основе один генетический код. Может случиться так, что все это окажется не просто совпадением. Когда-нибудь это поможет открыть универсальный закон Вселенной, о котором мы говорили в первой главе этой книги.
Во второй половине XX в. музыка и математика, искусство и наука снова начали сближаться благодаря использованию компьютерных программ для цифровой обработки данных. В конце 1910-х гг. Иосиф Шиллингер, советский музыковед, эмигрировавший в США, разработал систему музыкальной композиции, основанную на периодических колебаниях. Он увязал их с ритмом, тоном, гаммами, аккордами и аккордовыми последовательностями. Система изложена в семи книгах, в каждой из которых уделено внимание отдельному аспекту музыкальной композиции. Некоторые ученые считают, что Шиллингер описал создание музыки на компьютере задолго до появления первых компьютеров. По мнению некоторых экспертов, теория Шиллингера до сих пор не получила заслуженного признания, хотя очень серьезно повлияла на Джорджа Гершвина, Глена Миллера (оба были учениками Шиллингера) и Бенни Гудмена.
Модели, основанные на уравнениях и случайных последовательностях, чаще всего использовались при написании музыкальных композиций, но с 1970-х гг. стало возможным создавать алгоритмы на основе фракталов. По мнению многих, фрактальную музыку нельзя назвать подлинным искусством, так как искусство эмоционально, интуитивно и выразительно, в то время как наука рациональна, описательна и доказуема. Однако в большинстве подобных композиций фрактальная музыка служит лишь отправной точкой. Композитор создает фрактальную мелодию, которая сама по себе звучит странно и беспорядочно, затем изменяет ее, пока не получит приятную для слуха композицию. Этот процесс выполняется медленно, а результатом, по мнению многих авторов, будет чисто «компьютерная» музыка. Однако сам по себе компьютер никогда не смог бы создать похожее произведение.
«Звёздные Войны» — это уникальная смесь научной фантастики и сказки. Мы удивляемся разнообразию существ и технологий, возможностям джедаев и тайне Силы. Но что из описанного в «Звёздных Войнах» основано на реальной науке? Можем ли мы увидеть, как некоторые из необыкновенных изобретений материализуются в нашем мире? «Наука «Звёздных Войн» рассматривает с научной точки зрения различные вопросы из вселенной «Звёздных Войн», относящиеся к военным действиям, космическим путешествиям и кораблям, инопланетным расам и многому другому.
Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».
Настоящая книга посвящена жизни и деятельности выдающегося русского агронома И. А. Стебута (1833— 1923). Свыше полувека он занимал наиболее видное место среди деятелей русской агрономии. С именем Стебута связаны последние годы жизни первого сельскохозяйственного высшего учебного заведения в нашей стране — Горыгорецкого земледельческого института (ныне Белорусская сельскохозяйственная академия) и первые тридцать лет жизни Петровской академии (ныне Московская сельскохозяйственная Академия имени К. А. Тимирязева), в которой он возглавлял кафедру земледелия.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.