Новый взгляд на мир. Фрактальная геометрия - [34]

Шрифт
Интервал



Множество Жюлиа, соответствующее с = -1 с последовательными приближениями (изображены в виде линий вокруг множества точек черного цвета), рассчитанными по алгоритму времени убегания.


Различным значениям с соответствуют различные множества Жюлиа:



Анализ этих фигур показывает, что существует два принципиально разных класса множеств Жюлиа: те, которые образованы одной фигурой (такие множества Жюлиа называют связными), и те, что разделены на бесконечное множество отдельных точек вблизи друг от друга (такие множества называют несвязными).

На основании этой классификации можно разделить значения константы с, которую мы будем называть комплексным параметром, на два отдельных множества: те, которые порождают связные фигуры для итерации z>n >+>1 = z>2 + с, и те, что порождают несвязные фигуры.


ИГРА В ХАОС

Алгоритм нахождения последовательных приближений множества Жюлиа работает очень медленно. Чтобы быстро получить достаточно детальное изображение множества Жюлиа, обычно используется другой алгоритм, который носит название игры в хаос. В предыдущей главе мы говорили о так называемых аффинных преобразованиях, которые при итеративном применении дают линейный фрактал. Теперь нам понадобится найти преобразования, которые при итеративном применении дают множество Жюлиа. Однако эти преобразования не могут быть аффинными, так как множества Жюлиа не обладают линейным самоподобием. В свою очередь, когда к точкам, находящимся вблизи множества Жюлиа (и вне его) применяются итеративные преобразования z —> z>2 + с, орбита этих точек уходит в бесконечность. Иными словами, множество Жюлиа выступает в роли репеллера. Если же теперь мы рассмотрим обратное преобразование, то множество Жюлиа будет уже не репеллером, а аттрактором. Как записывается это обратное преобразование? Пусть w — следующая точка итерации w = z>2 + с. Если мы хотим перейти к предыдущей операции, нужно выделить z из этого уравнения. Получим два решения:

z = +√(wc);

= -√(wc).

Игра в хаос выглядит так: выбирается произвольная начальная точка, затем рассчитываются два изображения в соответствии с предыдущими преобразованиями. Процесс повторяется для всех полученных точек, результаты отображаются на экране. Чем больше итераций мы выполним, тем точнее будет полученное изображение множества Жюлиа.


Вселенная в одной песчинке

Деление множеств Жюлиа на связные и несвязные возникло не случайно. Именно в ходе исследований множества Жюлиа был открыт один из самых удивительных математических объектов — множество Мандельброта.

На первый взгляд, составление подобной классификации множеств Жюлиа невозможно, так как считалось, что для этого нужно проанализировать все возможные точки всех возможных множеств Жюлиа для каждого параметра с, которых бесконечно много. Однако Мандельброт использовал теорему, которую независимо друг от друга доказали Жюлиа и Фату примерно в 1919 г. Согласно этой теореме, орбита точки 0 определяет, является ли множество Жюлиа связным или нет. В частности, эта теорема подтверждает, что если орбита этой точки уходит в бесконечность, то множество Жюлиа несвязное; в противном случае множество Жюлиа является связным. Эта теорема имеет огромное значение, так как теперь достаточно выполнить итерацию для единственной точки z>0 = (0,0), чтобы определить природу множества Жюлиа.

Это очень точный и удобный способ выяснить, является ли множество Жюлиа связным. Но когда можно считать, что орбита точки (0, 0) уходит в бесконечность? Это нам уже известно: орбита уходит в бесконечность, если в какой-то момент она выходит за пределы окружности радиуса 2 и радиуса, равного |с|.

Мандельброт использовал это свойство, чтобы определить значения константы с, для которой множества Жюлиа являются связными. Когда он изобразил полученный набор значений с на комплексной плоскости, то увидел удивительную фигуру.

Грубо говоря, множество Мандельброта можно считать кардиоидой (кривой в форме сердца), которой касается бесконечное множество окружностей, среди которых выделяется одна наибольшего размера, расположенная слева от кардиоиды. При увеличении этой окружности становится видно, как она соединяется нитями с другими «аналогичными» структурами. Хотя кажется, что повсюду разбросаны отдельные точки, никак не соединенные друг с другом, в действительности множество Мандельброта является связным.

Множество внутренних точек этого множества имеет размерность 2. Несмотря на то что топологическая размерность границы множества Мандельброта равна единице, в 1991 г. японский математик Мицухиро Шишикура доказал, к удивлению многих, что ее размерность Хаусдорфа равна двум[23].

Если внимательно изучить последовательность кругов все меньшего диаметра, которые расположены вдоль горизонтальной оси, можно заметить следующее правило: отношение диаметров соседних кругов стремится к константе, примерно равной 4,6692… Это значение, которое называется постоянной Фейгенбаума, фигурирует в описании множества природных явлений. Причины этого до сих пор неясны.

Изображения множества Мандельброта будут более красивыми, а его границы — более отчетливыми, если использовать алгоритм времени убегания и палитру из нескольких разных цветов. Будем выделять разными цветами точки с различной скоростью убегания. Например, будем обозначать точку зеленым цветом, если ее орбита выходит за пределы окружности радиуса 2 за 11–20 итераций, желтым — если требуется 21–30 итераций (смотрите цветную вкладку в конце книги).


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.