Новый взгляд на мир. Фрактальная геометрия - [34]
Множество Жюлиа, соответствующее с = -1 с последовательными приближениями (изображены в виде линий вокруг множества точек черного цвета), рассчитанными по алгоритму времени убегания.
Различным значениям с соответствуют различные множества Жюлиа:
Анализ этих фигур показывает, что существует два принципиально разных класса множеств Жюлиа: те, которые образованы одной фигурой (такие множества Жюлиа называют связными), и те, что разделены на бесконечное множество отдельных точек вблизи друг от друга (такие множества называют несвязными).
На основании этой классификации можно разделить значения константы с, которую мы будем называть комплексным параметром, на два отдельных множества: те, которые порождают связные фигуры для итерации z>n >+>1 = z>2 + с, и те, что порождают несвязные фигуры.
ИГРА В ХАОС
Алгоритм нахождения последовательных приближений множества Жюлиа работает очень медленно. Чтобы быстро получить достаточно детальное изображение множества Жюлиа, обычно используется другой алгоритм, который носит название игры в хаос. В предыдущей главе мы говорили о так называемых аффинных преобразованиях, которые при итеративном применении дают линейный фрактал. Теперь нам понадобится найти преобразования, которые при итеративном применении дают множество Жюлиа. Однако эти преобразования не могут быть аффинными, так как множества Жюлиа не обладают линейным самоподобием. В свою очередь, когда к точкам, находящимся вблизи множества Жюлиа (и вне его) применяются итеративные преобразования z —> z>2 + с, орбита этих точек уходит в бесконечность. Иными словами, множество Жюлиа выступает в роли репеллера. Если же теперь мы рассмотрим обратное преобразование, то множество Жюлиа будет уже не репеллером, а аттрактором. Как записывается это обратное преобразование? Пусть w — следующая точка итерации w = z>2 + с. Если мы хотим перейти к предыдущей операции, нужно выделить z из этого уравнения. Получим два решения:
z = +√(w — c);
z = -√(w — c).
Игра в хаос выглядит так: выбирается произвольная начальная точка, затем рассчитываются два изображения в соответствии с предыдущими преобразованиями. Процесс повторяется для всех полученных точек, результаты отображаются на экране. Чем больше итераций мы выполним, тем точнее будет полученное изображение множества Жюлиа.
Деление множеств Жюлиа на связные и несвязные возникло не случайно. Именно в ходе исследований множества Жюлиа был открыт один из самых удивительных математических объектов — множество Мандельброта.
На первый взгляд, составление подобной классификации множеств Жюлиа невозможно, так как считалось, что для этого нужно проанализировать все возможные точки всех возможных множеств Жюлиа для каждого параметра с, которых бесконечно много. Однако Мандельброт использовал теорему, которую независимо друг от друга доказали Жюлиа и Фату примерно в 1919 г. Согласно этой теореме, орбита точки 0 определяет, является ли множество Жюлиа связным или нет. В частности, эта теорема подтверждает, что если орбита этой точки уходит в бесконечность, то множество Жюлиа несвязное; в противном случае множество Жюлиа является связным. Эта теорема имеет огромное значение, так как теперь достаточно выполнить итерацию для единственной точки z>0 = (0,0), чтобы определить природу множества Жюлиа.
Это очень точный и удобный способ выяснить, является ли множество Жюлиа связным. Но когда можно считать, что орбита точки (0, 0) уходит в бесконечность? Это нам уже известно: орбита уходит в бесконечность, если в какой-то момент она выходит за пределы окружности радиуса 2 и радиуса, равного |с|.
Мандельброт использовал это свойство, чтобы определить значения константы с, для которой множества Жюлиа являются связными. Когда он изобразил полученный набор значений с на комплексной плоскости, то увидел удивительную фигуру.
Грубо говоря, множество Мандельброта можно считать кардиоидой (кривой в форме сердца), которой касается бесконечное множество окружностей, среди которых выделяется одна наибольшего размера, расположенная слева от кардиоиды. При увеличении этой окружности становится видно, как она соединяется нитями с другими «аналогичными» структурами. Хотя кажется, что повсюду разбросаны отдельные точки, никак не соединенные друг с другом, в действительности множество Мандельброта является связным.
Множество внутренних точек этого множества имеет размерность 2. Несмотря на то что топологическая размерность границы множества Мандельброта равна единице, в 1991 г. японский математик Мицухиро Шишикура доказал, к удивлению многих, что ее размерность Хаусдорфа равна двум[23].
Если внимательно изучить последовательность кругов все меньшего диаметра, которые расположены вдоль горизонтальной оси, можно заметить следующее правило: отношение диаметров соседних кругов стремится к константе, примерно равной 4,6692… Это значение, которое называется постоянной Фейгенбаума, фигурирует в описании множества природных явлений. Причины этого до сих пор неясны.
Изображения множества Мандельброта будут более красивыми, а его границы — более отчетливыми, если использовать алгоритм времени убегания и палитру из нескольких разных цветов. Будем выделять разными цветами точки с различной скоростью убегания. Например, будем обозначать точку зеленым цветом, если ее орбита выходит за пределы окружности радиуса 2 за 11–20 итераций, желтым — если требуется 21–30 итераций (смотрите цветную вкладку в конце книги).
В книге в занимательной форме рассказывается об истории создания девяти известных литературных произведений: от жизненного факта, положенного в основу, до литературного воплощения.
Месяцы сочинительства и переделок написанного, мыканья по издательствам, кропотливой работы по продвижению собственной книги — так начиналась карьера бизнес-автора Екатерины Иноземцевой. Спустя три года в школе писательства, основанной Екатериной, обучались 1287 учеников, родилось 2709 статей, 1756 из которых опубликовали крупные СМИ. И главное: каждый из выпускников получил знания о том, как писательство помогает развить личный бренд. В этой книге — опыт автора в создании полезного и интересного контента, взаимодействия со СМИ и поиска вашего кода популярности.
В книге рассказывается, как родилась и развивалась физиология высшей нервной деятельности, какие непостижимые прежде тайны были раскрыты познанием за сто с лишним лет существования этой науки. И о том, как в результате проникновения физиологии в духовную, психическую деятельность человека, на стыке физиологии и математики родилась новая наука — кибернетика.
Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».
Настоящая книга посвящена жизни и деятельности выдающегося русского агронома И. А. Стебута (1833— 1923). Свыше полувека он занимал наиболее видное место среди деятелей русской агрономии. С именем Стебута связаны последние годы жизни первого сельскохозяйственного высшего учебного заведения в нашей стране — Горыгорецкого земледельческого института (ныне Белорусская сельскохозяйственная академия) и первые тридцать лет жизни Петровской академии (ныне Московская сельскохозяйственная Академия имени К. А. Тимирязева), в которой он возглавлял кафедру земледелия.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.