Новый взгляд на мир. Фрактальная геометрия - [32]

Шрифт
Интервал

. В прямоугольных координатах любому комплексному числу z сопоставлена точка с двумя координатами — вещественной и мнимой. Мнимые координаты откладываются на вертикальной оси, мнимая единица обозначается буквой i. Мнимое число i является квадратным корнем из -1. Именно поэтому комплексные числа долгое время назывались мнимыми. Они не так сложны, как может показаться, и благодаря им удалось упростить многие теории и формулировки. Для обозначения комплексных чисел на плоскости используется прямоугольная система координат, в которой по горизонтальной оси откладывается значение вещественной части, по вертикальной оси — значение мнимой части. Запишем одно и то же комплексное число через декартовы координаты, в алгебраическом виде и в полярных координатах:

z = (1/2, √3/2) = (1/2) + (√3/2i) = 1>60°

В этой формуле z — комплексное число, вещественная часть которого равна 1/2, мнимая — √3/2. Это равносильно тому, что радиус-вектор соответствующей точки комплексной плоскости имеет длину 1 и образует угол в 60° с горизонтальной осью. Для сложения двух комплексных чисел достаточно сложить по отдельности их вещественные и мнимые части. Например, если z>1 = (-2,4) и z>2 = (3,1), их сумма равна (1, 5). Если представить эти числа графически, то мы увидим, что их сумма — это всего лишь точка на диагонали параллелограмма, образованного радиус-векторами этих чисел. Чтобы выполнить умножение, достаточно следовать простым правилам: i>2 заменяется на -1, так как i равно квадратному корню из -1:

z>1z>2 = (-2 + 4i)(3 + i) = —2(3 + i) + 4i(3 + i) = (-6 — 2i) + (12i — 4) = -10 + 10i.

Полученной точке соответствует радиус-вектор, угол которого равен сумме углов радиус-векторов данных чисел, а длина (которая называется модулем) равна произведению длин этих радиус-векторов.



Импульсивно-компульсивные вычисления

Важнейший вывод всех упомянутых работ был таков: с помощью очень простой формулы можно получить сложные результаты. Как мы увидим чуть позже, этот вывод имел большое значение для всей науки в целом.

В итеративной процедуре результат вычислений, полученный на предыдущем этапе, является входным значением для вычислений на следующем этапе. Суть этого метода в том, что с некоторым числом выполняется определенная операция, она же выполняется над полученным результатом, затем над результатом, полученным на следующем этапе, и так до бесконечности. В формальном виде это можно представить так:

x>n+1 = f(x>n).


Чтоб лучше понять, о чем идет речь, представим, что этой операцией является возведение числа в квадрат. В этом случае запись примет следующий вид:

x>n+1 = x>n>2


Примем в качестве начального значения любое число, например x>0 = 2. Тогда на первом шаге получим х>1 = 2>2 = 4; затем х>2 = 4>2 = 16, х>3 = 16>2 = 256 и так далее. Полученная последовательность чисел (в нашем примере это последовательность 2, 4, 16, 256….) называется орбитой, а точка, к которой стремится эта последовательность (в нашем случае это бесконечно удаленная точка), называется аттрактором.

Если рассматривать эту же операцию возведения в квадрат, но выбрать начальное значение, меньшее 1, например x>0 = 0,5, то аттрактором будет 0. Если x>0 = 1, результат на любом шаге всегда будет равен 1. В этом случае говорят, что орбита состоит из одной точки, которая называется фиксированной точкой.

В конце XIX в. математики, физики и биологи проявляли большой интерес к итеративному процессу, в котором значение, полученное на предыдущем шаге, возводилось в квадрат и складывалось с некой константой. На языке математики это называется семейством квадратичных функций вещественной переменной. Интерес научного сообщества был вызван тем, что это семейство функций было связано с рядом различных теорий, которые со временем были объединены в так называемую теорию хаоса.


Точки-пленники, или Как найти выход из лабиринта

Жюлиа и Фату первыми исследовали итерируемые комплексные функции, и полученные ими результаты легли в основу всех последующих работ в области фрактальной геометрии. Помимо прочего, Жюлиа и Фату изучали поведение комплексных чисел при их последовательном возведении в квадрат и сложении результата с константой. В виде формулы это выражается так:

z>n+1 = z>n>2 c,

где z — комплексное число, с — комплексная константа. Суть формулы проста: нужно взять число, умножить его на само себя, сложить с константой с и повторять эти действия над каждым полученным результатом снова и снова. В полученной последовательности комплексных чисел каждое число зависит только от выбора начальной точки и константы с.

В 1906 г. Фату доказал, что если применить эту операцию ко всем точкам комплексной плоскости, то большинство полученных орбит будут заканчиваться на бесконечности, за исключением четко определенного множества точек, внутренняя часть которого сегодня известна как множество Фату. Эти точки можно назвать «пленниками», а остальные точки — «изгнанниками». Точки на границе между ними, «охранники», образуют множество Жюлиа.

Рассмотрим подробнее эту операцию при с = (0, 0). Квадрат комплексного числа — это точка комплексной плоскости, модуль радиус-вектора которой равен квадрату модуля радиус-вектора исходной точки, а угол с горизонтальной осью в два раза больше исходного.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.