Новый взгляд на мир. Фрактальная геометрия - [32]

Шрифт
Интервал

. В прямоугольных координатах любому комплексному числу z сопоставлена точка с двумя координатами — вещественной и мнимой. Мнимые координаты откладываются на вертикальной оси, мнимая единица обозначается буквой i. Мнимое число i является квадратным корнем из -1. Именно поэтому комплексные числа долгое время назывались мнимыми. Они не так сложны, как может показаться, и благодаря им удалось упростить многие теории и формулировки. Для обозначения комплексных чисел на плоскости используется прямоугольная система координат, в которой по горизонтальной оси откладывается значение вещественной части, по вертикальной оси — значение мнимой части. Запишем одно и то же комплексное число через декартовы координаты, в алгебраическом виде и в полярных координатах:

z = (1/2, √3/2) = (1/2) + (√3/2i) = 1>60°

В этой формуле z — комплексное число, вещественная часть которого равна 1/2, мнимая — √3/2. Это равносильно тому, что радиус-вектор соответствующей точки комплексной плоскости имеет длину 1 и образует угол в 60° с горизонтальной осью. Для сложения двух комплексных чисел достаточно сложить по отдельности их вещественные и мнимые части. Например, если z>1 = (-2,4) и z>2 = (3,1), их сумма равна (1, 5). Если представить эти числа графически, то мы увидим, что их сумма — это всего лишь точка на диагонали параллелограмма, образованного радиус-векторами этих чисел. Чтобы выполнить умножение, достаточно следовать простым правилам: i>2 заменяется на -1, так как i равно квадратному корню из -1:

z>1z>2 = (-2 + 4i)(3 + i) = —2(3 + i) + 4i(3 + i) = (-6 — 2i) + (12i — 4) = -10 + 10i.

Полученной точке соответствует радиус-вектор, угол которого равен сумме углов радиус-векторов данных чисел, а длина (которая называется модулем) равна произведению длин этих радиус-векторов.



Импульсивно-компульсивные вычисления

Важнейший вывод всех упомянутых работ был таков: с помощью очень простой формулы можно получить сложные результаты. Как мы увидим чуть позже, этот вывод имел большое значение для всей науки в целом.

В итеративной процедуре результат вычислений, полученный на предыдущем этапе, является входным значением для вычислений на следующем этапе. Суть этого метода в том, что с некоторым числом выполняется определенная операция, она же выполняется над полученным результатом, затем над результатом, полученным на следующем этапе, и так до бесконечности. В формальном виде это можно представить так:

x>n+1 = f(x>n).


Чтоб лучше понять, о чем идет речь, представим, что этой операцией является возведение числа в квадрат. В этом случае запись примет следующий вид:

x>n+1 = x>n>2


Примем в качестве начального значения любое число, например x>0 = 2. Тогда на первом шаге получим х>1 = 2>2 = 4; затем х>2 = 4>2 = 16, х>3 = 16>2 = 256 и так далее. Полученная последовательность чисел (в нашем примере это последовательность 2, 4, 16, 256….) называется орбитой, а точка, к которой стремится эта последовательность (в нашем случае это бесконечно удаленная точка), называется аттрактором.

Если рассматривать эту же операцию возведения в квадрат, но выбрать начальное значение, меньшее 1, например x>0 = 0,5, то аттрактором будет 0. Если x>0 = 1, результат на любом шаге всегда будет равен 1. В этом случае говорят, что орбита состоит из одной точки, которая называется фиксированной точкой.

В конце XIX в. математики, физики и биологи проявляли большой интерес к итеративному процессу, в котором значение, полученное на предыдущем шаге, возводилось в квадрат и складывалось с некой константой. На языке математики это называется семейством квадратичных функций вещественной переменной. Интерес научного сообщества был вызван тем, что это семейство функций было связано с рядом различных теорий, которые со временем были объединены в так называемую теорию хаоса.


Точки-пленники, или Как найти выход из лабиринта

Жюлиа и Фату первыми исследовали итерируемые комплексные функции, и полученные ими результаты легли в основу всех последующих работ в области фрактальной геометрии. Помимо прочего, Жюлиа и Фату изучали поведение комплексных чисел при их последовательном возведении в квадрат и сложении результата с константой. В виде формулы это выражается так:

z>n+1 = z>n>2 c,

где z — комплексное число, с — комплексная константа. Суть формулы проста: нужно взять число, умножить его на само себя, сложить с константой с и повторять эти действия над каждым полученным результатом снова и снова. В полученной последовательности комплексных чисел каждое число зависит только от выбора начальной точки и константы с.

В 1906 г. Фату доказал, что если применить эту операцию ко всем точкам комплексной плоскости, то большинство полученных орбит будут заканчиваться на бесконечности, за исключением четко определенного множества точек, внутренняя часть которого сегодня известна как множество Фату. Эти точки можно назвать «пленниками», а остальные точки — «изгнанниками». Точки на границе между ними, «охранники», образуют множество Жюлиа.

Рассмотрим подробнее эту операцию при с = (0, 0). Квадрат комплексного числа — это точка комплексной плоскости, модуль радиус-вектора которой равен квадрату модуля радиус-вектора исходной точки, а угол с горизонтальной осью в два раза больше исходного.


Рекомендуем почитать
История девяти сюжетов

В книге в занимательной форме рассказывается об истории создания девяти известных литературных произведений: от жизненного факта, положенного в основу, до литературного воплощения.


Как стать популярным автором

Месяцы сочинительства и переделок написанного, мыканья по издательствам, кропотливой работы по продвижению собственной книги — так начиналась карьера бизнес-автора Екатерины Иноземцевой. Спустя три года в школе писательства, основанной Екатериной, обучались 1287 учеников, родилось 2709 статей, 1756 из которых опубликовали крупные СМИ. И главное: каждый из выпускников получил знания о том, как писательство помогает развить личный бренд. В этой книге — опыт автора в создании полезного и интересного контента, взаимодействия со СМИ и поиска вашего кода популярности.


Тайны, догадки, прозрения

В книге рассказывается, как родилась и развивалась физиология высшей нервной деятельности, какие непостижимые прежде тайны были раскрыты познанием за сто с лишним лет существования этой науки. И о том, как в результате проникновения физиологии в духовную, психическую деятельность человека, на стыке физиологии и математики родилась новая наука — кибернетика.


Интернет животных. Новый диалог между человеком и природой

Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».


Иван Александрович Стебут, 1833–1923

Настоящая книга посвящена жизни и деятельности выдающегося русского агронома И. А. Стебута (1833— 1923). Свыше полувека он занимал наиболее видное место среди деятелей русской агрономии. С именем Стебута связаны последние годы жизни первого сельскохозяйственного высшего учебного заведения в нашей стране — Горыгорецкого земледельческого института (ныне Белорусская сельскохозяйственная академия) и первые тридцать лет жизни Петровской академии (ныне Московская сельскохозяйственная Академия имени К. А. Тимирязева), в которой он возглавлял кафедру земледелия.


Знание-сила, 1998 № 03 (849)

Ежемесячный научно-популярный научно-художественный журнал для молодежи.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Том 13. Абсолютная точность и другие иллюзии. Секреты статистики

Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.