Новый взгляд на мир. Фрактальная геометрия - [30]

Шрифт
Интервал

Кривая Коха, о которой мы рассказали в прошлой главе, обладает свойством самоподобия, так как состоит из нескольких (четырех) частей, подобных всей кривой в целом. Чтобы получить первую часть кривой (расположенную слева), нужно всего.\ишь уменьшить всю кривую в три раза и совместить левый конец кривой с левым концом полученной уменьшенной копии.

Чтобы получить вторую часть, нужно опять-таки уменьшить всю кривую в три раза, повернуть ее на 60° относительно горизонтальной оси и совместить ее левый конец с правым концом первой части кривой. Здесь мы используем параллельный перенос, сжатие и поворот — все эти преобразования являются преобразованиями подобия.

Можно выполнить аналогичные действия и с треугольником Серпинского. Нам не понадобится использовать поворот, достаточно параллельного переноса и уменьшения в три раза. Это же справедливо и для канторова множества (называемого также канторовой пылью), ковра Серпинского, губки Менгера и кривой дракона.

Добавим к повороту и симметрии два новых преобразования: одно из них позволяет изменять ширину и высоту фигуры в разных пропорциях, другое — поворачивать оси координат на разные углы. Получим множество преобразований, которые называются аффинными преобразованиями плоскости. Первое из этих двух преобразований позволяет трансформировать квадрат в треугольник, а с помощью второго, которое называется сжатием, можно превратить квадрат в ромб. Фрактальные структуры, которые можно получить с помощью подобных преобразований, называются самоаффинными. К ним относится очень известный «папоротник Барнсли», открытый британским ученым Майклом Барнсли. Можно заметить, что для его построения требуется четыре аффинных преобразования, одно из которых заключается в сжатии по ширине до нуля (так формируется стебель), второе, примененное трижды, — комбинация сжатия и поворота (представлено на рисунке), с помощью которого получаются ветви.



Папоротник Барнсли и его различные аффинные преобразования.


Используя эти преобразования, можно построить множество различных фракталов, которые называются линейными фракталами или системами итерируемых функций (от английского IFS — Iterated Function Systems). Эти системы получаются путем применения ряда преобразований к некоему множеству. Согласно формулировке, введенной Барнсли в книге «Фракталы повсюду», система итерируемых функций — это система функций, задающих определенное преобразование, которое затем выполняется на протяжении множества итераций. Результатом применения этих преобразований является так называемый аттрактор. Другими словами, аттрактор системы итерируемых функций — это форма, к которой стремится фрактал, когда указанные преобразования повторяются достаточно большое число раз. Может показаться удивительным, но аттрактор не зависит от изначально выбранной исходной фигуры, на которой строится фрактал. Все фракталы, о которых мы рассказали в этой книге, можно построить, используя это множество преобразований.

Попробуем использовать систему итерируемых функций, чтобы описать кривую дракона, о которой рассказано в предыдущей главе. Несмотря на внешнюю сложность этой кривой, для ее построения нужно всего два преобразования. Чтобы показать, что форма итоговой кривой не зависит от исходного множества, построим кривую дракона сначала на основе отрезка, а затем на основе некоторой фигуры.

В случае с отрезком будем для простоты считать его длину равной единице. Сначала уменьшим отрезок в 1/√2 раз и повернем его на 45° против часовой стрелки. Поместим левый конец отрезка в точку с координатами (0, 0). Затем снова уменьшим исходный отрезок в 1/√2 раз и повернем его на 135° снова против часовой стрелки, поместив правый конец полученного отрезка в точку с координатами (1,1).

Нетрудно заметить, что полученные отрезки соприкасаются концами в верхней точке. Это возможно благодаря тому, что мы подобрали коэффициент уменьшения так, что отрезки образуют половину квадрата, разрезанного по диагонали. Применив эти же преобразования к кривой, полученной на первой итерации, получим следующую итерацию кривой дракона и так далее. Заметьте, насколько быстро кривая, полученная на промежуточных итерациях, приближается по форме к итоговой кривой дракона.



Кривая дракона, построенная на основе отрезка.

>(Источник: Мария Изабель Бинимелис.)


Во втором случае выберем в качестве исходной фигуры изображение щенка далматинца, которых в итоге станет 101, а может быть, и больше. Построение кривой дракона в этом случае будет аналогично построению на основе отрезка.



Кривая дракона, построенная на основе изображения далматинца.

>(Источник: Мария Изабель Бинимелис.)


Коллаж для воссоздания любого изображения

Мы увидели, как с помощью систем итерируемых функций можно получить некоторые классические фракталы, и показали, как при последовательном выполнении аффинных преобразований формируется некий аттрактор. Тем не менее по-настоящему интересно то, что для любого изображения можно описать систему итерируемых функций, аттрактором которой будет данное изображение. Другими словами, мы решим обратную задачу фрактальной геометрии.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.