Новый взгляд на мир. Фрактальная геометрия - [29]

Шрифт
Интервал



Функцию Такаги, равно как и функцию Больцано, можно представить в виде суммы ряда полигональных функций. Алгоритм, с помощью которого строятся эти функции, называется «смещение средней точки». Он использовался еще Архимедом для вычисления площади сегмента, ограниченного дугой параболы и ее хордой. На рисунке ниже представлены различные этапы построения графика. Каждому последующему этапу соответствует более тонкая линия.

На первом шаге строятся две копии исходного графика. Затем возьмем первую копию и сместим ее среднюю точку влево в точку с координатами (1/4; 1). Точки ее основания будут иметь координаты (0; 0) и (1/2; 1). Выполним аналогичные действия со второй копией. Ее средняя точка будет иметь координаты (3/4; 1), а крайние точки — (1/2; 1) и (1; 0). Полученный многоугольник станет отправной точкой для второго этапа построения. Аналогично выполняется третий этап, и так до бесконечности. В пределе получим кривую, под которой расположены все кривые, построенные на предыдущих итерациях.



Эта кривая также носит название кривой бланманже за схожесть с французским десертом бланманже — разновидностью пудинга.

Если выполнить это построение в трех измерениях и выбирать смещения случайным образом, то получим изображение, которое будет очень похоже на реальный пейзаж. Подобным способом, например, был создан инопланетный пейзаж в блокбастере «Звездный Путь II. Ярость Хана» (режиссер Николас Мейер, 1982), а также знаменитая Звезда Смерти в фильме «Звездные войны. Эпизод VI; Возвращение джедая» (автор сценария Джордж Лукас, 1983).


Дьявольская лестница

В статье 1884 г., озаглавленной «О свойствах совершенных множеств точек», Георг Кантор описал в высшей степени странную функцию, определенную на единичном квадрате. Эта функция является непрерывной и возрастающей, ее производная равна нулю почти во всех точках, график этой функции от нуля до единицы направлен вверх без «скачков». На этом участке длина кривой, определяемой этой функцией, равна 2. Кроме этого, график функции обладает свойством самоподобия: часть, ограниченную осью абсцисс, можно разделить на шесть равных частей, которые будут иметь ту же форму, что и весь график в целом. Коэффициент сжатия вдоль горизонтальной оси будет равен 1/3, вдоль вертикальной — 1/2. Благодаря этим загадочным свойствам и форме, напоминающей лестницу, график этой функции получил название дьявольской лестницы. Существуют и другие графики с этим названием, но функция, приведенная здесь, была описана раньше других и является наиболее типичной.

Дьявольская лестница строится по рекурсивной процедуре. В центральной трети единичного квадрата на высоте 1/2 нужно провести отрезок, параллельный оси абсцисс. Затем следует провести две диагонали, соединяющие концы этого отрезка с вершинами единичного квадрата, как показано на рисунке. На втором этапе нужно выполнить аналогичные действия над остальными третями графика. Повторяя эти действия до бесконечности, мы получим дьявольскую лестницу.



>Первые итерации построения дьявольской лестницы.

>(Источник: Мария Изабель Бинимелис.)


Дьявольская лестница — это не просто график некоторой функции с примеча тельными свойствами. Она описывает свойства многих физических систем.


ДЬЯВОЛЬСКИЕ ЛИНЗЫ

В отличие от обычных, или преломляющих, линз, дифракционные линзы фокусируют лучи благодаря явлению дифракции, которое возникает при взаимодействии света с физической структурой линзы в форме концентрических колец различной плотности и (или) светопроницаемости. Существует разновидность дифракционных линз, известных как дьявольские линзы, которые обладают повышенной глубиной резкости и меньшими хроматическими аберрациями. Несмотря на зловещее название, эти линзы не содержат чего-то колдовского или сверхъестественного, что подтверждают их создатели: «Эти линзы получили такое название благодаря особому профилю, который был разработан по образцу фрактальной структуры, известной в математике под названием „дьявольская лестница"».

Эти линзы являются мультифокальными, то есть имеют несколько очень близко расположенных точек фокуса. Интенсивность света в фокусах линзы описывается фрактальной структурой. Мультифокальность линзы означает, что фокусы, соответствующие различным длинам световых волн, накладываются друг на друга; тем самым создается более четкое изображение. Это же свойство позволяет повысить глубину резкости, то есть расширить область, в пределах которой обеспечивается четкость изображения.



На фотографиях представлены дифракционные линзы под микроскопом. Видно, что они образованы множеством неравномерно расположенных концентрических колец. В основе строения этих линз лежит фрактальная структура. Мультифокальные линзы подобного типа используются для коррекции зрения.

Они также могут быть имплантированы внутрь глаза при операциях по удалению катаракты.


Что общего у губок, пылинок и снежинок?

Простейшие преобразования объектов, которые можно выполнить на плоскости, называются преобразованиями подобия. Как следует из названия, они преобразуют один объект в другой, подобный первому, то есть изменяют не форму объекта, а лишь его положение, размер или ориентацию. К преобразованиям подобия относятся параллельный перенос, сжатие и растяжение, вращение и отражение.


Рекомендуем почитать
Звуки в морских глубинах

Наше поколение стало свидетелем необычайной победы человеческого разума — начала проникновения в космос. Перед молодежью открываются увлекательные, полные заманчивости перспективы межпланетных путешествий и открытий. Но есть еще и на нашей «обжитой» планете Земля много неизученных «белых пятен», среди них почти неизвестный на всю его глубину Мировой океан с его подводными горами и впадинами, со своим растительным и животным миром, со своими физическими законами. В изучении его большую пользу приносит гидроакустика — сравнительно молодая наука, имеющая большое будущее. Эта наука имеет большое прикладное значение.


Знание-сила, 2000 № 05-06 (875,876)

Ежемесячный научно-популярный и научно-художественный журнал.


Дьявольский ген

Оказалось, достаточно всего одного поколения медиков, чтобы полностью изменить взгляд на генетические заболевания. Когда-то они воспринимались как удар судьбы, а сейчас во многих случаях с ними можно справиться. Некоторые из них почти исчезли, как, например, талассемия, отступившая на Кипре благодаря определенным политическим мерам, или болезнь Тея–Сакса, все менее распространенная у евреев-ашкеназов. Случаи заболевания муковисцидозом также сократились. Генетические заболевания похожи на родовое проклятие, то появляющееся, то исчезающее от поколения к поколению.


Стареть, не старея. О жизненной активности и старении

Книга Рюди Вестендорпа, профессора геронтологии Лейденского университета и директора Лейденской академии жизненной активности и старения, анализирует процесс старения и его причины в широком аспекте современных научных знаний. Чему мы можем научиться от людей, которые оставались здоровыми всю свою исключительно долгую жизнь? Помогут ли нам ограничения в пище или гормоны, витамины и минеральные вещества? Как сохранить свои жизненные силы, несмотря на лишения и болезни? Автор систематизирует факторы, влияющие на постоянно растущую продолжительность жизни людей нашего времени. В книге подробно обсуждаются социальные и политические последствия этого жизненного взрыва.


Динозавры. 150 000 000 лет господства на Земле

Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.


Тайны, догадки, прозрения

В книге рассказывается, как родилась и развивалась физиология высшей нервной деятельности, какие непостижимые прежде тайны были раскрыты познанием за сто с лишним лет существования этой науки. И о том, как в результате проникновения физиологии в духовную, психическую деятельность человека, на стыке физиологии и математики родилась новая наука — кибернетика.


Когда прямые искривляются. Неевклидовы геометрии

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий.


Том 13. Абсолютная точность и другие иллюзии. Секреты статистики

Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.