Новый взгляд на мир. Фрактальная геометрия - [29]

Шрифт
Интервал



Функцию Такаги, равно как и функцию Больцано, можно представить в виде суммы ряда полигональных функций. Алгоритм, с помощью которого строятся эти функции, называется «смещение средней точки». Он использовался еще Архимедом для вычисления площади сегмента, ограниченного дугой параболы и ее хордой. На рисунке ниже представлены различные этапы построения графика. Каждому последующему этапу соответствует более тонкая линия.

На первом шаге строятся две копии исходного графика. Затем возьмем первую копию и сместим ее среднюю точку влево в точку с координатами (1/4; 1). Точки ее основания будут иметь координаты (0; 0) и (1/2; 1). Выполним аналогичные действия со второй копией. Ее средняя точка будет иметь координаты (3/4; 1), а крайние точки — (1/2; 1) и (1; 0). Полученный многоугольник станет отправной точкой для второго этапа построения. Аналогично выполняется третий этап, и так до бесконечности. В пределе получим кривую, под которой расположены все кривые, построенные на предыдущих итерациях.



Эта кривая также носит название кривой бланманже за схожесть с французским десертом бланманже — разновидностью пудинга.

Если выполнить это построение в трех измерениях и выбирать смещения случайным образом, то получим изображение, которое будет очень похоже на реальный пейзаж. Подобным способом, например, был создан инопланетный пейзаж в блокбастере «Звездный Путь II. Ярость Хана» (режиссер Николас Мейер, 1982), а также знаменитая Звезда Смерти в фильме «Звездные войны. Эпизод VI; Возвращение джедая» (автор сценария Джордж Лукас, 1983).


Дьявольская лестница

В статье 1884 г., озаглавленной «О свойствах совершенных множеств точек», Георг Кантор описал в высшей степени странную функцию, определенную на единичном квадрате. Эта функция является непрерывной и возрастающей, ее производная равна нулю почти во всех точках, график этой функции от нуля до единицы направлен вверх без «скачков». На этом участке длина кривой, определяемой этой функцией, равна 2. Кроме этого, график функции обладает свойством самоподобия: часть, ограниченную осью абсцисс, можно разделить на шесть равных частей, которые будут иметь ту же форму, что и весь график в целом. Коэффициент сжатия вдоль горизонтальной оси будет равен 1/3, вдоль вертикальной — 1/2. Благодаря этим загадочным свойствам и форме, напоминающей лестницу, график этой функции получил название дьявольской лестницы. Существуют и другие графики с этим названием, но функция, приведенная здесь, была описана раньше других и является наиболее типичной.

Дьявольская лестница строится по рекурсивной процедуре. В центральной трети единичного квадрата на высоте 1/2 нужно провести отрезок, параллельный оси абсцисс. Затем следует провести две диагонали, соединяющие концы этого отрезка с вершинами единичного квадрата, как показано на рисунке. На втором этапе нужно выполнить аналогичные действия над остальными третями графика. Повторяя эти действия до бесконечности, мы получим дьявольскую лестницу.



>Первые итерации построения дьявольской лестницы.

>(Источник: Мария Изабель Бинимелис.)


Дьявольская лестница — это не просто график некоторой функции с примеча тельными свойствами. Она описывает свойства многих физических систем.


ДЬЯВОЛЬСКИЕ ЛИНЗЫ

В отличие от обычных, или преломляющих, линз, дифракционные линзы фокусируют лучи благодаря явлению дифракции, которое возникает при взаимодействии света с физической структурой линзы в форме концентрических колец различной плотности и (или) светопроницаемости. Существует разновидность дифракционных линз, известных как дьявольские линзы, которые обладают повышенной глубиной резкости и меньшими хроматическими аберрациями. Несмотря на зловещее название, эти линзы не содержат чего-то колдовского или сверхъестественного, что подтверждают их создатели: «Эти линзы получили такое название благодаря особому профилю, который был разработан по образцу фрактальной структуры, известной в математике под названием „дьявольская лестница"».

Эти линзы являются мультифокальными, то есть имеют несколько очень близко расположенных точек фокуса. Интенсивность света в фокусах линзы описывается фрактальной структурой. Мультифокальность линзы означает, что фокусы, соответствующие различным длинам световых волн, накладываются друг на друга; тем самым создается более четкое изображение. Это же свойство позволяет повысить глубину резкости, то есть расширить область, в пределах которой обеспечивается четкость изображения.



На фотографиях представлены дифракционные линзы под микроскопом. Видно, что они образованы множеством неравномерно расположенных концентрических колец. В основе строения этих линз лежит фрактальная структура. Мультифокальные линзы подобного типа используются для коррекции зрения.

Они также могут быть имплантированы внутрь глаза при операциях по удалению катаракты.


Что общего у губок, пылинок и снежинок?

Простейшие преобразования объектов, которые можно выполнить на плоскости, называются преобразованиями подобия. Как следует из названия, они преобразуют один объект в другой, подобный первому, то есть изменяют не форму объекта, а лишь его положение, размер или ориентацию. К преобразованиям подобия относятся параллельный перенос, сжатие и растяжение, вращение и отражение.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.