Новый взгляд на мир. Фрактальная геометрия - [27]
Почему кровеносная и другие системы, которыми управляет нервная система, демонстрируют хаотическую динамику? Подобная динамика обладает рядом преимуществ. Хаотические системы способны работать в широком диапазоне условий, следовательно, обладают гибкостью и приспособляемостью. Подобная пластичность позволяет справляться с непредсказуемыми изменениями среды.
* * *
Американский писатель Майкл Крайтон использовал кривую дракона в своем романе «Парк Юрского периода». В начале каждой главы изображена соответствующая итерация кривой дракона с кратким комментарием одного из героев романа Яна Малькольма — математика и специалиста по теории хаоса. В книге рассказывается о клонировании динозавров на основе их ДНК, и кривая дракона служит метафорой этого сложного и нестабильного процесса.
Кривая дракона в заголовках глав «Парка Юрского периода».
Граница этой кривой имеет неправильную форму, но, что удивительно, идеально вписывается в границы других кривых дракона так, что ими можно целиком замостить плоскость. Согнуть лист бумаги можно двумя способами: «долиной» и «горкой». Если мы будем сгибать лист разными способами на каждой итерации, то вид кривой заметно изменится. Существует 16 способов построения кривой дракона, но лишь пять из них являются основными.
В 1958 г. Мандельброт начал работу в научно-исследовательском центре IBM, где занимался анализом шумов и электрических помех. Он обнаружил, что шумы подчиняются определенному образцу: группы колебаний повторялись при разном масштабе наблюдений. Повторяющиеся шаблоны совпадали не полностью, а были статистически подобными. Но несмотря на это, такие колебания все равно нельзя было описать известными методами математической статистики. Мандельброт начал подробнее исследовать это явление, стремясь обнаружить подобные шаблоны, которые нельзя описать методами математической статистики, в других системах. В попытках дать ответ на эти вопросы он разработал методы наблюдений, основанные на самоподобии, и с их помощью открыл фракталы. Мандельброт показал, что эти методы являются очень мощным инструментом для изучения случайных событий в столь различных сферах, как геостатика, экономика, физика и медицина.
В этой главе мы уже увидели, что задолго до Мандельброта изучением фракталов занимались некоторые известные математики. Мир, который описывает геометрия Евклида, ограничивается кубами, конусами и сферами и образован прямыми линиями, плоскими поверхностями и окружностями. Вейерштрасс, Кантор, Пуанкаре, Пеано, Гильберт, Кох, Серпинский и Хаусдорф смотрели дальше и видели неясные очертания другого, удивительного мира — мира текстур, ветвей и расщелин, из которых состояли многочисленные и сложные объекты.
Фигуры, открытые этими математиками, бросали вызов общепринятым определениям. Эти фигуры часто называли математическими монстрами, сравнивали с патологиями и болезнями. Тем не менее революционные работы этих ученых существенно продвинули вперед всю математику в целом.
Глава 3
О далматинцах и драконах. Линейные фракталы
Мать-природа не посещала уроков геометрии и не читала книг Евклида Александрийского. Ее геометрия полна зазубрин, но с собственной логикой, причем такой, которую легко понять.
Нассим Николас Талеб. Черный лебедь
И в шедеврах Эшера, и в других похожих картинах можно увидеть, что повторяемость и самоподобие порождают объекты, противоречащие здравому смыслу, и увлекают зрителя в головокружительную бездну. Мы расскажем, как на основе понятия самоподобия и принципа непрерывности, введенного Лейбницем, формировался фундамент нового раздела геометрии. Философы до сих пор не пришли к единому мнению относительно понятия непрерывности. В математике это понятие изменялось, уточнялось, ему давались различные определения, пока оно не оформилось в окончательном виде. Важность понятия непрерывности в развитии математики очевидна уже потому, что это понятие всегда было одним из самых изучаемых.
Обычно считается, что пространство и время непрерывны. Некоторые философы также утверждают, что непрерывными являются все процессы в природе. Отсюда и знаменитый афоризм Лейбница: Natura non facit saltus («Природа не делает скачков»). В привычном смысле «непрерывный» означает «непрестанный, происходящий без перерывов». В математике, где точность имеет первостепенное значение, путь к точному определению непрерывности был долог и тернист. Даже определение функции долгое время было связано с понятием непрерывности[19].
В терминах современной математики выразить утверждение, похожее на изречение Лейбница, довольно сложно. В последние годы XVIII в. считалось, что для непрерывных функций бесконечно малое изменение аргумента ведет к бесконечно малому изменению значения функции. В XIX в. ученые отказались от понятия «бесконечно малое»[20], и это определение было заменено другим, где использовалось более точное понятие предела.
Если мы скажем, например, что функция не делает скачков, на языке математики это будет недостаточно точно. В попытках дать более точное определение можно прийти к следующему: график непрерывной функции должен быть связным (то есть его нельзя разделить на два открытых множества, пересечение которых будет пустым множеством), однако, возможно, следует сказать, что он должен быть линейно связным
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.