Новый взгляд на мир. Фрактальная геометрия - [27]

Шрифт
Интервал



Почему кровеносная и другие системы, которыми управляет нервная система, демонстрируют хаотическую динамику? Подобная динамика обладает рядом преимуществ. Хаотические системы способны работать в широком диапазоне условий, следовательно, обладают гибкостью и приспособляемостью. Подобная пластичность позволяет справляться с непредсказуемыми изменениями среды.

* * *

Американский писатель Майкл Крайтон использовал кривую дракона в своем романе «Парк Юрского периода». В начале каждой главы изображена соответствующая итерация кривой дракона с кратким комментарием одного из героев романа Яна Малькольма — математика и специалиста по теории хаоса. В книге рассказывается о клонировании динозавров на основе их ДНК, и кривая дракона служит метафорой этого сложного и нестабильного процесса.



Кривая дракона в заголовках глав «Парка Юрского периода».


Граница этой кривой имеет неправильную форму, но, что удивительно, идеально вписывается в границы других кривых дракона так, что ими можно целиком замостить плоскость. Согнуть лист бумаги можно двумя способами: «долиной» и «горкой». Если мы будем сгибать лист разными способами на каждой итерации, то вид кривой заметно изменится. Существует 16 способов построения кривой дракона, но лишь пять из них являются основными.

В 1958 г. Мандельброт начал работу в научно-исследовательском центре IBM, где занимался анализом шумов и электрических помех. Он обнаружил, что шумы подчиняются определенному образцу: группы колебаний повторялись при разном масштабе наблюдений. Повторяющиеся шаблоны совпадали не полностью, а были статистически подобными. Но несмотря на это, такие колебания все равно нельзя было описать известными методами математической статистики. Мандельброт начал подробнее исследовать это явление, стремясь обнаружить подобные шаблоны, которые нельзя описать методами математической статистики, в других системах. В попытках дать ответ на эти вопросы он разработал методы наблюдений, основанные на самоподобии, и с их помощью открыл фракталы. Мандельброт показал, что эти методы являются очень мощным инструментом для изучения случайных событий в столь различных сферах, как геостатика, экономика, физика и медицина.

В этой главе мы уже увидели, что задолго до Мандельброта изучением фракталов занимались некоторые известные математики. Мир, который описывает геометрия Евклида, ограничивается кубами, конусами и сферами и образован прямыми линиями, плоскими поверхностями и окружностями. Вейерштрасс, Кантор, Пуанкаре, Пеано, Гильберт, Кох, Серпинский и Хаусдорф смотрели дальше и видели неясные очертания другого, удивительного мира — мира текстур, ветвей и расщелин, из которых состояли многочисленные и сложные объекты.

Фигуры, открытые этими математиками, бросали вызов общепринятым определениям. Эти фигуры часто называли математическими монстрами, сравнивали с патологиями и болезнями. Тем не менее революционные работы этих ученых существенно продвинули вперед всю математику в целом.

Глава 3

О далматинцах и драконах. Линейные фракталы

Мать-природа не посещала уроков геометрии и не читала книг Евклида Александрийского. Ее геометрия полна зазубрин, но с собственной логикой, причем такой, которую легко понять.

Нассим Николас Талеб. Черный лебедь


И в шедеврах Эшера, и в других похожих картинах можно увидеть, что повторяемость и самоподобие порождают объекты, противоречащие здравому смыслу, и увлекают зрителя в головокружительную бездну. Мы расскажем, как на основе понятия самоподобия и принципа непрерывности, введенного Лейбницем, формировался фундамент нового раздела геометрии. Философы до сих пор не пришли к единому мнению относительно понятия непрерывности. В математике это понятие изменялось, уточнялось, ему давались различные определения, пока оно не оформилось в окончательном виде. Важность понятия непрерывности в развитии математики очевидна уже потому, что это понятие всегда было одним из самых изучаемых.

Обычно считается, что пространство и время непрерывны. Некоторые философы также утверждают, что непрерывными являются все процессы в природе. Отсюда и знаменитый афоризм Лейбница: Natura non facit saltus («Природа не делает скачков»). В привычном смысле «непрерывный» означает «непрестанный, происходящий без перерывов». В математике, где точность имеет первостепенное значение, путь к точному определению непрерывности был долог и тернист. Даже определение функции долгое время было связано с понятием непрерывности[19].

В терминах современной математики выразить утверждение, похожее на изречение Лейбница, довольно сложно. В последние годы XVIII в. считалось, что для непрерывных функций бесконечно малое изменение аргумента ведет к бесконечно малому изменению значения функции. В XIX в. ученые отказались от понятия «бесконечно малое»[20], и это определение было заменено другим, где использовалось более точное понятие предела.

Если мы скажем, например, что функция не делает скачков, на языке математики это будет недостаточно точно. В попытках дать более точное определение можно прийти к следующему: график непрерывной функции должен быть связным (то есть его нельзя разделить на два открытых множества, пересечение которых будет пустым множеством), однако, возможно, следует сказать, что он должен быть линейно связным


Рекомендуем почитать
Антикитерский механизм: Самое загадочное изобретение Античности

Это уникальное устройство перевернуло наши представления об античном мире. Однако история Антикитерского механизма, названного так в честь греческого острова Антикитера, у берегов которого со дна моря были подняты его обломки, полна темных пятен. Многие десятилетия он хранился в Национальном археологическом музее Греции, не привлекая к себе особого внимания.В научном мире о его существовании знали, но даже ученые не могли поверить, что это не мистификация, и поразительный механизм, использовавшийся для расчета движения небесных тел, действительно дошел до нас из глубины веков.


Технологии против человека

Технологии захватывают мир, и грани между естественным и рукотворным становятся все тоньше. Возможно, через пару десятилетий мы сможем искать информацию в интернете, лишь подумав об этом, – и жить многие сотни лет, искусственно обновляя своё тело. А если так случится – то что будет с человечеством? Что, если технологии избавят нас от необходимости работать, от старения и болезней? Всемирно признанный футуролог Герд Леонгард размышляет, как изменится мир вокруг нас и мы сами. В основу этой книги легло множество фактов и исследований, с помощью которых автор предсказывает будущее человечества.


Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Профиль равновесия

В природе все взаимосвязано. Деятельность человека меняет ход и направление естественных процессов. Она может быть созидательной, способствующей обогащению природы, а может и вести к разрушению биосферы, к загрязнению окружающей среды. Главная тема книги — мысль о нашей ответственности перед потомками за природу, о возможностях и обязанностях каждого участвовать в сохранении и разумном использовании богатств Земли.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


История астрономии. Великие открытия с древности до Средневековья

Книга авторитетного британского ученого Джона Дрейера посвящена истории астрономии с древнейших времен до XVII века. Автор прослеживает эволюцию представлений об устройстве Вселенной, начиная с воззрений древних египтян, вавилонян и греков, освещает космологические теории Фалеса, Анаксимандра, Парменида и других греческих натурфилософов, знакомит с учением пифагорейцев и идеями Платона. Дрейер подробно описывает теорию концентрических планетных сфер Евдокса и Калиппа и геоцентрическую систему мироздания Птолемея.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Том 6. Четвертое измерение. Является ли наш мир тенью другой Вселенной?

Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.