Новый взгляд на мир. Фрактальная геометрия - [25]

Шрифт
Интервал



Скульптурное изображение губки Менгера.


«Близким родственником» этой кривой является тетраэдр Серпинского, который строится путем удаления центрального из пяти одинаковых тетраэдров. Он имеет чуть меньшую размерность подобия, нежели губка Менгера: log 4 / log 2 = 2.



Тетраэдр Серпинского.


Теперь, когда мы знаем, как вычисляется размерность подобия, попробуем связать ее с показателем степени, который фигурирует в законе Ричардсона, описывающем измерение границ и береговых линий. Представим, что мы хотим найти формулу Ричардсона для берега воображаемого острова, который имеет форму снежинки Коха. Этот остров (назовем его остров Коха) образован тремя одинаковыми кривыми, каждая из которых состоит из четырех самоподобных частей; коэффициент уменьшения равен 1/3. Следовательно, будет разумным выбрать для измерения длины берега раствор циркуля, равный 1/3, 1/9, 1/27 и так далее. Измерим один из трех берегов острова. Начнем с раствора циркуля, равного 1/3. Допустим, что длина стороны исходного треугольника равна единице. Первое приближенное значение длины берега будет равно 4/3. Выбрав раствор циркуля, равный 1/9, получим значение длины 16/9. Выполнив аналогичные расчеты, получим, что для раствора циркуля s = 1/3>k имеем l = (4/3)>k.

Представим полученные значения на логарифмической шкале. Мы можем выбрать любое основание логарифма. Будем использовать логарифмы по основанию 3 — это упростит вычисления, так как коэффициент уменьшения равен 1/3. Вспомним, что уравнение прямой, найденное Ричардсоном, имеет вид log>3 l = d∙log>3 (1/s). Если мы подставим в нее значения, вычисленные для стороны острова, получим log>3 (4/3)>k = d∙log>33>h. Упростив, получим d = log>3 (4/3) = 0,2619.

Вспомним, что размерность подобия для снежинки Коха равнялась D>s = 1,2629. Как видим, дробные части этих чисел совпадают. Можно показать, что для объекта, обладающего самоподобием, наклон прямой Ричардсона d и размерность подобия связаны следующей простой формулой: D>s = 1 + d. Это означает, что размерность подобия можно вычислить двумя способами. Первый основан на геометрических свойствах фигуры, в нем фигурирует число частей структуры, подобных всей структуре в целом, и коэффициент уменьшения. Этот способ мы уже неоднократно использовали. Второй способ заключается в измерении расстояний с помощью циркуля.

Заметим, что размерность, вычисленная по алгоритму Ричардсона, является обобщением размерности подобия (они отличаются на единицу). Иными словами, мы можем вычислить фрактальную размерность для кривых, которые не обладают свойством самоподобия, например для берегов или границ. Но как можно вычислить размерность объектов, которые напоминают по форме пятно, губку или облако? В этих случаях циркуль нам не поможет. Расчет фрактальной размерности объекта может оказаться трудной задачей. Существует множество фракталов, размерность которых до сих пор не удалось рассчитать.

В этом случае нужно использовать размерность Минковского-Булигана. Она также известна как размерность Минковского, или грубая размерность. Она широко применяется в науке, так как ее можно очень просто рассчитать с помощью компьютера. Она также схожа с топологической размерностью и размерностью подобия.

Рассмотрим, почему это так. Проанализируем покрытие объекта, для которого мы хотим вычислить размерность. Если этот объект находится на плоскости, будем использовать для покрытия круги сравнительно малого радиуса. Если же объект находится в пространстве, будем использовать сферы. Это схоже с топологической размерностью Лебега, определенной посредством покрытий. Чтобы мы могли использовать общее обозначение для отрезков прямой, кругов на плоскости и сфер в пространстве, будем говорить о «шариках» радиуса эпсилон (ε). Будем обозначать N (ε) число шариков радиуса ε. Вычислим натуральный логарифм от этого числа и разделим его на log (1/ε), что, в свою очередь, отсылает к определению размерности подобия. Вспомним, что, применяя последнюю формулу к различным коэффициентам уменьшения, мы всегда получали один и тот же результат. Для объектов, которые не обладают свойством самоподобия (именно такие объекты мы сейчас рассматриваем), это не так. Определим размерность Минковского D>m как

D>M = lim>e->>0 (log N(ε) / log (1/ε)).

Иными словами, размерность Минковского равна значению выражения log N (ε) / log (1/ε), когда ε стремится к 0.


ОПТИМАЛЬНЫЙ МАРШРУТ КОММИВОЯЖЕРА

В 1912 г. Серпинский незадолго до того, как открыл треугольник, названный в его честь, занимался изучением кривой, которая строилась по рекурсивному алгоритму и покрывала плоскость.



Сейчас эта кривая используется для решения задачи коммивояжера, в которой необходимо найти кратчайший маршрут, проходящий через определенные точки плоскости. Одна из возможных стратегий — обойти точки в той же последовательности, которую описывает кривая Серпинского. Для этого необходимо, во-первых, сформировать подобную кривую и нарисовать ее так, чтобы она покрывала все нужные точки маршрута. Если это не удалось, нужно использовать кривую Серпинского следующей итерации. Как только нам удалось построить кривую, которая проходит через все требуемые точки, искомый маршрут найден. Этот алгоритм применяется, например, при расчете маршрутов доставки почтовых посылок. Он также позволяет сократить общее расстояние, которое проходит перо плоттера при отрисовке карт.


Рекомендуем почитать
Укус эволюции. Откуда у современного человека неправильный прикус, кривые зубы и другие деформации челюсти

Огромное количество детей и взрослых по всему миру имеют проблемы с прикусом, и эти проблемы носят не только эстетический характер, они могут стать причиной серьезных заболеваний. В этой книге врач-стоматолог Сандра Кан, и Пол Р. Эрлих, известный биолог, изучают причины и последствия неправильного развития челюсти у современного человека, а также представляют новый взгляд на ортодонтию и лечение зубов. По их мнению, из-за недостаточного развития челюсти могут возникать апноэ, затруднение дыхания, болезни сердца, депрессия и другие опасные состояния.


Смерть и оживление

Научно-популярная брошюра для крестьян, 1926 г.


Блики на портрете

Расшифровка генетического кода, зашита от инфекционных болезней и патент на совершенную фиксацию азота, проникновение в тайну злокачественного роста и извлечение полезных ископаемых из морских вод — неисчислимы сферы познания и практики, где изучение микроорганизма помогает добиваться невиданных и неслыханных результатов… О достижениях микробиологии, о завтрашнем дне этой науки рассказывает академик АМН СССР О. Бароян.


ГОРМОНичное тело

Лишний вес, состояние хронического стресса, переедание, недовольство собственной внешностью – это наиболее распространенные жалобы 80 % современных женщин. Что делать, если косметика и экстремальные диеты не помогают, а постоянное ощущение нехватки сил не дает жить полноценной жизнью? Как замедлить метаболизм на этапе похудения и удержать массу тела? Как предотвратить переход преддиабета в диабет? Как не дать разрядиться нашей «батарейке» – щитовидной железе? Можно ли победить старение? Какие анализы совершенно бесполезны? Как подготовиться к визиту к эндокринологу? В книге Марины Берковской есть не только ответы на эти вопросы, но и четкие инструкции по управлению гормональным фоном.


(Не) умереть от разбитого сердца

Можно ли умереть от разбитого сердца? Действительно ли горе и невзгоды способны фатально повлиять на самый жизненно важный орган нашего организма? Возможно, мы совсем не случайно воспринимаем сердце как символ чувств. Дело в том, что эмоции действительно оказывают на сердце огромное влияние. Но насколько глубока связь между драматичным расставанием с партнером и сердечными заболеваниями? Доктор Никки Стамп исследует в своей книге так называемый «синдром разбитого сердца» – а также делится уникальным опытом, который она приобрела во время своей работы.


На что похоже будущее? Даже ученые не могут предсказать… или могут?

Каждый день в мире совершаются открытия и принимаются решения, влияющие на наше будущее. Но может ли кто-то предвидеть, что ждет человечество? Возможна ли телепортация (спойлер: да), как изменится климат, каким будет транспорт и что получится, если искусственный интеллект возьмет над нами верх? Станут ли люди счастливее с помощью таблеток и здоровее благодаря лечению с учетом индивидуальной ДНК? Каких чудес техники нам ждать? Каких революций в быту? В этой книге ведущие мировые специалисты во главе с Джимом Аль-Халили, пользуясь знаниями передовой науки, дают читателю представление о том, что его ждет впереди.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Том 13. Абсолютная точность и другие иллюзии. Секреты статистики

Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.