Новый взгляд на мир. Фрактальная геометрия - [23]

Шрифт
Интервал

Мы уже определили понятие размерности для любых объектов и увидели, что существуют кривые, подобные кривым Гильберта и Пеано, которые имеют размерность 1, но покрывают область размерностью 2. Возникает необходимость дать понятию размерности другое определение, которое согласовывалось бы с результатами наших наблюдений. Кривая Коха будет идеальным примером, который проиллюстрирует наши рассуждения. Новая размерность, о которой мы поговорим далее, называется фрактальной размерностью. Затем мы продемонстрируем фрактальную размерность для фигур, не обладающих свойством самоподобия.

Понятие самоподобия более подробно обсуждается в следующей главе. Здесь же мы укажем лишь его некоторые основные свойства. Объект обладает самоподобием, если имеет ту же форму, что и его части. Части самоподобного объекта могут быть получены путем преобразований этого объекта, которые называются преобразованиями подобия. Например, если мы возьмем кривую Коха, уменьшим ее в три раза и сделаем три копии новой, уменьшенной кривой, то сможем соединить их так, что получится новая кривая Коха. Мы последовательно расположим копии кривой так, что первая будет располагаться горизонтально, вторая — с поворотом на 60°, третья — с поворотом на —60°, четвертая — вновь горизонтально.

Этим свойством обладают и другие, даже самые простые объекты: например, можно уменьшить отрезок в два раза, соединить между собой две его уменьшенные копии и снова получить исходный отрезок. Нечто подобное можно сделать с квадратом: его можно уменьшить в четыре раза, затем соединить четыре уменьшенные копии и снова получить исходный квадрат. Во всех структурах, обладающих свойством самоподобия, существует взаимосвязь между коэффициентом уменьшения r (коэффициентом масштаба) и количеством частей n, на которые делится исходный объект. Рассмотрим эту взаимосвязь подробнее.

В случае отрезка коэффициент уменьшения r = 1/2, а для восстановления исходного отрезка нужно n = 2 копии. Если коэффициент уменьшения r равен 1/3, то нам понадобится n = 3 копии. Следовательно, во всех случаях n = 1/r. В случае квадрата для коэффициента уменьшения r = 1/2 потребуется n = 4 копии, чтобы восстановить исходный квадрат. Если коэффициент уменьшения r равен 1/3, то нам понадобится n = 9 копий. Во всех случаях будет выполняться соотношение n = 1/г>2.

Выполнив аналогичные подсчеты для куба, получим, что при коэффициенте уменьшения, равном 1/2, для восстановления исходного квадрата потребуется 8 копий, при коэффициенте уменьшения, равном 1/3, — 27 копий. В обоих случаях справедливо соотношение n = 1/r>3. Показатель степени г всегда совпадает с топологической размерностью исходной фигуры.

Однако если мы проведем подобные вычисления для кривой Коха, то получим, что в первой итерации n = 4, r = 1/3. В этом случае взаимосвязь уже не столь очевидна. Руководствуясь результатами, полученными для отрезка и квадрата, предположим, что аналогичное соотношение выполняется и для кривой Коха, следовательно, 4 = 3>D, где D — условная размерность рассматриваемой кривой. Вычислить D очень просто: нужно взять логарифм от обеих частей уравнения. Получим: log 4 = D∙log 3, D = log 4/log 3 = 1,2629. Если мы выполним аналогичные вычисления для второй итерации кривой, получим 16 = 9>D или, что аналогично,



Фотографии Нила, Амазонки и Великих озер, сделанные с самолета. Можно увидеть крайне неравномерную структуру, которая описывается с помощью моделей фрактальной геометрии.



Силуэт большой рыбы, которая съедает маленькую, — аттрактор системы из 11 итерируемых функций. Шесть из них описывают тело рыбы, четыре — хвост, еще одна — силуэт маленькой рыбы. На рисунке приведена третья итерация.



Скульптура, автора которой вдохновил тетраэдр Серпинского. Он строится аналогично треугольнику Серпинского, единственная разница состоит в том, что вместо трех треугольников на плоскости используются четыре тетраэдра в пространстве.



Построение кривой Такаги, или бланманже, из многоугольников. Каждый следующий многоугольник строится на основе предыдущего по алгоритму, известному как «смещение средней точки».

Его использовал еще Архимед для вычисления площади сегмента, ограниченного дугой параболы и ее хордой.



Для создания этих искусственных пейзажей использовался тот же алгоритм, что и при построении графика функции Такаги, но уже в трех измерениях, с некоторыми изменениями и со случайным набором параметров. Генерирование фрактальных пейзажей применяется при съемках многих фильмов.



Некоторые объекты природы, например облака, легче моделируются с помощью фрактальной, а не евклидовой геометрии. Симуляция облаков производится с помощью приема компьютерной графики, который называется плазма. В нем используется коэффициент рассеивания, от которого будет зависеть итоговый результат.



Генетический код растений и других живых существ строится по принципу наименьшего действия. Инструкции, определяющие рост живых организмов, записываются в генетическом коде максимально экономичным образом. Именно поэтому большинство из них обладает свойствами самоподобия и имеет фрактальную структуру.


Рекомендуем почитать
Священный Грааль и тайна деспозинов

Говорят: история умеет хранить свои тайны. Справедливости ради добавим: способна она порой и проговариваться. И при всем стремлении, возникающем время от времени кое у кого, вытравить из нее нечто нежелательное, оно то и дело будет выглядывать наружу этими «проговорками» истории, порождая в людях вопросы и жажду дать на них ответ. Попробуем и мы пробиться сквозь бастионы одной величественной Тайны, пронзающей собою два десятка веков.


Физик в гостях у политика

Эта книга для людей которым хочется лучше понять происходящее в нашем мире в последние годы. Для людей которые не хотят попасть в жернова 3-ей мировой войны из-за ошибок и амбиций политиков. Не хотят для своей страны судьбы Гитлеровской Германии или современной Украины. Она отражает взгляд автора на мировые события и не претендуют на абсолютную истину. Это попытка познакомить читателя с альтернативной мировой масс медиа точкой зрения. Довольно много фактов и объяснений автор взял из открытых источников.


Ладога

"Ладога" - научно-популярный очерк об одном из крупнейших озер нашей страны. Происхождение и географические характеристики Ладожского озера, животный и растительный мир, некоторые проблемы экономики, города Приладожья и его достопримечательности - таковы вопросы, которые освещаются в книге. Издание рассчитано на широкий круг читателей.


Три аксиомы

О друзьях наших — деревьях и лесах — рассказывает автор в этой книге. Вместе с ним читатель поплывет на лодке по Днепру и увидит дуб Тараса Шевченко, познакомится со степными лесами Украины и побывает в лесах Подмосковья, окажется под зеленым сводом вековечной тайги и узнает жизнь городских парков, пересечет Белое море и даже попадет в лесной пожар. Путешествуя с автором, читатель побывает у лесорубов и на плотах проплывет всю Мезень. А там, где упал когда-то Тунгусский метеорит, подивится чуду, над разгадкой которого ученые до сих пор ломают головы.


Краткая всемирная история

Книга известного английского писателя Г. Дж. Уэллса является, по сути, уникальным проектом: она читается как роман, но роман, дающий обобщенный обзор всемирной истории, без усложнений и спорных вопросов.


Как произошла жизнь на Земле

Давайте совершим путешествие вместе с наукой в далёкое прошлое, чтобы прийти к тому времени, когда зарождалась жизнь на Земле, и узнать, как это совершалось. От такого путешествия станет крепче уверенность в силе науки, в силе человеческого разума, в нашей собственной силе.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Том 13. Абсолютная точность и другие иллюзии. Секреты статистики

Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.