Новый взгляд на мир. Фрактальная геометрия - [21]
Приближение кривой ломаными.
Кривая называется спрямляемой, если длины вписанных в нее ломаных стремятся к определенному общему значению L, когда длины отрезков ломаных стремятся к нулю, то есть отрезки становятся все короче и короче. Это общее значение L и будет длиной заданной кривой. Для вычисления площадей используются аналогичные рассуждения с той лишь разницей, что вместо длин отрезков вычисляется площадь прямоугольников.
В приведенном примере мы используем различные объекты, имеющие топологическую размерность 1 (отрезки), чтобы вычислить приближенное значение объекта такой же размерности (кривой). Алгоритм действий удивительно остроумен и в то же время интуитивно понятен.
Существует ли вероятность аппроксимации объектов любой евклидовой размерности с помощью других объектов меньшей размерности? Например, можно ли найти приближенное значение площади квадрата с помощью кривой? Интуитивно понятно, что это невозможно: кривые не имеют толщины, следовательно, не могут покрывать пространство полностью. Иными словами, объект, имеющий топологическую размерность 1 (кривую) нельзя преобразовать в объект размерности 2 (например, в квадрат). Кажется, что предполагать обратное было бы попросту нелепо.
Итальянский математик Джузеппе Пеано в 1890 г. открыл непрерывную кривую, проходящую через все точки квадрата с единичной стороной, то есть кривую размерности 1, которую можно преобразовать в объект размерности 2. Пеано следовал тем же путем, что и Кантор, который ранее доказал противоречащее интуиции утверждение: мощность бесконечного множества точек отрезка единичной длины равна мощности бесконечного множества точек любой поверхности, например квадрата с единичной стороной. Подробнее мы рассмотрим это революционное открытие несколько позже[18].
Интуиция подсказывает, что непрерывная кривая — это «путь, которым следует точка при непрерывном движении». Чтобы устранить неоднозначность определения и подчеркнуть значимость открытия Пеано, Жордан в 1887 г. ввел следующее строгое определение непрерывной кривой: «Непрерывная кривая является непрерывным отображением отрезка, определенным для всех точек единичного отрезка». Стандартный алгоритм построения кривой Пеано — это повторяющийся процесс, при котором каждый из девяти отрезков исходной кривой заменяется кривой, сгенерированной на каждой итерации алгоритма.
Девять отрезков исходной кривой приведены на рисунке ниже (первый отрезок обозначен цифрой 1 и так далее):
Затем процесс повторяется для каждого из девяти исходных отрезков (иными словами, каждый из девяти отрезков заменяется всем рисунком) и так далее. В результате получим кривую следующего вида (на нижней тройке изображений углы срезаны, чтобы наглядно показать, что кривую Пеано можно построить, не отрывая карандаша от бумаги).
После бесконечного числа итераций кривая Пеано примет форму квадрата.
Однако сам Пеано нашел лишь аналитическое построение, но не определил этот итеративный процесс и также не смог изобразить эту кривую графически (однако он привел рисунок в виде перевернутой восьмерки, чтобы показать непрерывность найденной им кривой). Пеано просто показал, как именно график найденной им функции будет постепенно заполнять квадрат. Другие математики в попытках графически представить абстрактную функцию, описанную Пеано, предложили итеративный алгоритм ее построения, показанный на рисунках выше, а также на следующем рисунке:
Как следствие, мы не знаем, какую именно из этих кривых можно назвать собственно кривой Пеано. Обе они в пределе образуют одну и ту же фигуру — квадрат.
В статье Пеано, которая была опубликована в 1890 г., впервые описывалась кривая, покрывающая плоскость.
Также существуют варианты кривой Пеано, которые не покрывают плоскость. Одну из них можно получить аналогичным преобразованием исходных девяти отрезков с тем отличием, что вертикальные линии будут короче горизонтальных.
Еще одну кривую подобного вида можно получить, если удалить центральный отрезок. Эта кривая обладает интересным свойством: ее график является непрерывным, но функция, которая определяет эту кривую, непрерывной не является.
МУЗЫКА И МАТЕМАТИКА
Идея о том, что одномерный объект может целиком покрывать плоскость, легла в основу музыкальных композиций. Например, скрипач Скоп Джон сочинил 11-минутную композицию для контрабаса и английского рожка, в первой части которой два инструмента целиком заполняют ритмическое и тональное пространство. Когда начинает появляться новая тональность, один из двух инструментов немедленно переходит в другую тональность. В результате образуется своеобразное противостояние между длинными выразительными и быстрыми энергичными фразами. Во второй части оба исполнителя выдерживают единообразие формы и стиля. Неясные тональности первой части становятся более четкими. Если мы рассмотрим партитуру в различных масштабах, то заметим обилие схожих частей.
Еще до того, как появились графические изображения кривой Пеано, Давид Гильберт открыл другую кривую, которая также покрывает плоскость. Базовый принцип, лежащий в основе кривой Гильберта, слегка отличается от принципа кривой Пеано: используется не единственный шаблон, а несколько, и к каждому из них применяются различные правила. Подобные построения называются нестандартными.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.