Новый взгляд на мир. Фрактальная геометрия - [19]
Продемонстрируем эффект Ричардсона, сравнив приближенное значение длины окружности с одной стороны и периметр острова Мальорка — с другой. Пусть окружность имеет диаметр 100 км — это величина одного порядка с диаметром острова. Длина окружности будет в 71 раз больше диаметра, то есть 314,15… км. Поместим результаты на логарифмическую шкалу, чтобы лучше оценить результаты для разных растворов циркуля, которые мы будем применять при измерениях. Отметим на горизонтальной оси логарифм величины, обратной раствору циркуля, что можно интерпретировать как точность измерений: при малом растворе циркуля s точность измерений 1/s будет выше. На вертикальной оси будем отмечать логарифмы от рассчитанных значений периметра.
Для раствора циркуля, эквивалентного 50 км, наилучшим приближением окружности будет шестиугольник со стороной в 50 км и периметром в 300 км. Если в качестве приближения окружности мы выберем 12-угольник со стороной 25,882 км, то приближенное значение ее длины составит 310,584 км, для 24-угольника со стороной 13,053 км — 313,272 км, для 48-угольника со стороной 6,54 км — 313,92 км, для 96-угольника со стороной 3,272 км — 314,112 км и для 192-угольника со стороной 1,636 км снова получим длину, равную 314,112 км. Мы видим, что по мере уменьшения раствора циркуля приближенное значение длины окружности все ближе и ближе к реальному.
Однако при измерении длины побережья Мальорки все иначе. Если в качестве приближения выберем многоугольник со стороной 28 км, получим периметр 362,2 км, для многоугольника со стороной 14 км периметр будет равен 416,7 км, при стороне, равной 7 км, периметр будет равен 467,7 км, при стороне 3,5 км периметр достигнет 524,8 км.
В обоих случаях точки графика с хорошей точностью аппроксимирует прямая. Очевидно, нельзя ожидать, что точки будут лежать точно на одной прямой — это невозможно в силу неизбежной погрешности измерений. В случае с окружностью прямая расположена практически горизонтально; для береговой линии Мальорки прямая имеет наклон (угловой коэффициент d = 0,17). Уравнение прямой можно выразить в виде log l = d∙log (1/s) + k, где l — приближенное значение периметра для раствора циркуля s; d — рассчитанный угловой коэффициент прямой; k — некая постоянная. При переходе к экспоненциальной форме получим:
l = с/s>d,
где с — основание логарифма в степени k.
Заметьте, насколько эта формула похожа на закон Корчака.
Итог работы Ричардсона таков: традиционное понятие длины при измерении береговой линии не имеет смысла. Он предложил использовать новую величину, которую можно назвать «морщинистость», определяемую значением углового коэффициента d из предыдущего примера. Для реальных границ и побережий были получены следующие значения d:
d = 0,25 для западного побережья Британии, одного из самых изрезанных заливами берегов на планете;
d = 0,15 для границы Германии;
d = 0,14 для границы Испании с Португалией;
d = 0,13 для побережья Австралии;
d = 0,02 для южноафриканского побережья, одного из наиболее ровных берегов.
Фрактальные объекты в природе обычно можно увидеть в границах и деревьях.
К границам относятся границы между любыми двумя средами в биологии, физике, химии и так далее, а также между двумя разными поверхностями: границы между странами, берега рек, морские побережья, облака и многое другое.
К деревьям в этом смысле можно отнести все случаи ветвления с самоподобием: деревья, кусты и растения, бассейны рек, молнии и так далее.
Некоторые растения и бассейны некоторых рек при наблюдении с высоты имеют фрактальную структуру.
Кривые, поверхности и объемные тела могут быть столь сложны, что измерение их параметров может вызвать серьезные затруднения. Однако длина, площадь и объем не изменяются произвольно в зависимости от выбранного масштаба, и существуют законы, позволяющие вычислить одну из этих величин, если известна другая. Закон, открытый Ричардсоном (а также открытия Корчака, Ципфа и Херста), согласно которому длина является степенной функцией точности с показателем степени d, будет полезен в обсуждении нового понятия — размерности.
В начале XX в. одной из крупнейших задач математики было определение размерности и ее свойств. Ситуация осложнилась, когда начали появляться различные виды размерности: топологическая, размерность Хаусдорфа, фрактальная, самоподобия и многие другие. Все они связаны между собой, в определенных ситуациях некоторые из них имеют смысл, а другие нет, иногда они совпадают, иногда отличаются. Вопреки тому, что можно было бы ожидать, не следует думать, будто существует некое единственное определение размерности, которое полностью раскрывает смысл этого понятия. Поиски единого приемлемого универсального определения, подобно поискам Святого Грааля, оказались безрезультатны.
Джеральд А. Эдгар в своей книге Measure, Topology and Fractal Geometry («Измерения, топология и фрактальная геометрия») так иллюстрирует понятие размерности:
«Пусть дана точка в трехмерном пространстве. Мы можем заключить ее внутрь куба, словно в тюрьму. Куб образован шестью плоскими гранями. Следует учитывать, что эти грани являются двумерными. Мы можем заключить точку на одной из этих граней в „тюрьму“, нарисовав вокруг нее небольшую окружность. Если грани куба являются двумерными, то нужно понимать, что окружность является одномерной. Точка, которая находится внутри одной из окружностей, может быть заключена в „тюрьму“ с помощью двух точек, которые будут стенами „тюрьмы“. Следует учитывать, что множество, содержащее всего две точки, имеет нулевую размерность. Наконец, точка, которая находится на множестве из двух точек, уже не может двигаться. Чтобы заключить ее в „тюрьму“, не нужно стен. По определению, это множество имеет размерность 0».
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.