Новый взгляд на мир. Фрактальная геометрия - [17]

Шрифт
Интервал

Диск Пуанкаре является частью важного ряда моделей геометрии Лобачевского, так как в реальном трехмерном пространстве (на языке математики оно обозначается

) не существует поверхности, на которой бы выполнялись законы этой геометрии[14]. Следовательно, этот раздел геометрии отличается от эллиптической геометрии, прекрасной моделью которой является сфера.

Модель, описанная Пуанкаре, — это круг, метрика которого отличается от метрики евклидовой плоскости. Метрика диска Пуанкаре такова, что все уменьшается в размерах по мере приближения к границе круга[15]. Как следствие, человек, живущий в мире Пуанкаре, никогда не сможет попасть на «край света».


ОБИТАТЕЛИ ГИПЕРБОЛИЧЕСКОГО МИРА

Понимают ли существа, обитающие в мире Пуанкаре, в каком пространстве они живут? Представим, что один из обитателей этого мира измерил длину свой ладони, которая оказалась равной 20 см. Затем он начинает идти в сторону края круга и спустя некоторое время снова измеряет длину ладони. Для нас его ладонь уменьшится в размерах, а для него длина ладони будет по-прежнему равна 20 см, так как расстояние между делениями линейки тоже уменьшится. Измерения относительны: для нас, сторонних наблюдателей, его ладонь уменьшится в размерах, для жителя этой плоскости ее длина не изменится. Аналогично для нас его мир ограничен, а для него — безграничен, так как он никогда не сможет достичь его края. Как обитатель этого мира может понять, что живет на гиперболической плоскости? Один из возможных способов — найти сумму углов произвольного треугольника, которая будет меньше 180°. Треугольник должен быть достаточно большим, чтобы на результат не повлияла погрешность измерений, так как с увеличением размеров треугольника сумма его углов будет уменьшаться. Еще один способ — провести окружность радиуса r и убедиться, что ее длина превышает 2πr (поэтому плоскость и называется гиперболической). Однако в этом случае радиус окружности также должен быть достаточно большим.

* * *

В серии работ «Предел — круг» Эшер попытался изобразить эту метрику и свойство прямых в гиперболической геометрии, в то же время дав собственную трактовку бесконечности как вселенной в капле воды. Схемы замощения могут отличаться: представленная на рисунке схема, которую использовал в своей работе

Пуанкаре, состоит из семиугольников. Каждая вершина семиугольника является общей еще для двух семиугольников. Особенный интерес представляет картина Зшера «Ангелы и демоны», на которой пятиугольники, в которых все углы «прямые», каждой вершиной соединяются еще с тремя.



Слева — треугольная функция, которую использовал Пуанкаре в работе об эллиптических функциях. Как позднее говорил сам Пуанкаре, в этой работе он применил неевклидову геометрию. Справа — «Ангелы и демоны» Эшера.


О войнах и длине границ

Чешский географ и статистик Яромир Корчак изучал влияние географического местоположения на население. В 1938 г. он провел статистические исследования числа больших островов в разных регионах мира и обнаружил закон, который сыграл ключевую роль в определении понятия размерности в математике. Для данной площади S он вычислил число островов с площадью, большей чем S. Подсчитав по этому правилу число островов N(S) для каждого S, он представил результаты в виде точек на оси координат. Выполнив эти действия для разных регионов, для каждого из них он получил соответствующий график. Он заметил, что эти графики похожи: N обратно пропорционально S в определенной степени, то есть N равно константе k, разделенной на S в степени, которую мы обозначим за D:

N(S) = k/S>D.

Корчак сопоставил каждому региону соответствующее значение D. Впоследствии его результаты были уточнены, и теперь нам известно, что D для Африки (где один большой остров окружен мелкими) равно 0,5; D для Индонезии и Северной Америки (где крупные острова преобладают не столь явно) равно 0,75, а для всей планеты это число равно 0,65.

В прошлом веке многие ученые выявили похожие законы, например для словарного запаса людей или уровня воды в Ниле. Во всех этих законах фигурирует показатель степени, схожий с D. Наиболее значимым из них является закон, открытый Льюисом Фраем Ричардсоном (1881–1953), английским ученым и пацифистом, который первым применил современные математические методы для прогнозирования погоды, а также для изучения причин возникновения войн и их предотвращения. Изучая закономерности возникновения войн, он решил исследовать взаимосвязь вероятности войны между двумя странами и протяженности границы между ними.

Много лет Ричардсон собирал данные о протяженности границ между странами, но результаты его исследований были опубликованы лишь в 1961 г., спустя восемь лет после его смерти. В своей статье он отметил, что разные страны приводят разную длину одних и тех же границ с другими странами (для этого было достаточно обратиться к соответствующим справочникам). Например, в испанских справочниках длина границы между Испанией и Португалией равна 987 км, в португальских — 1214 км. Аналогично в голландских источниках указана длина границы с Бельгией в 380 км, в бельгийских источниках приведена цифра в 449 км.


Рекомендуем почитать
Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.