Новый взгляд на мир. Фрактальная геометрия - [18]

Шрифт
Интервал


НАСКОЛЬКО ВЕЛИКА СПИРАЛЬ?

Спирали представляют собой класс объектов, которые ставят под сомнение традиционный способ измерения длины. Спиралями интересовались математики всех времен. Так, Архимед написал трактат о спиралях и открыл особый тип спиралей, который был назван в его честь. Архимедова спираль подобна поперечному сечению свернутого ковра, то есть расстояние между ее витками всегда остается постоянным. Спираль Архимеда описывается следующей формулой: r, где r — координата точки спирали, которая зависит от угла φ поворота центральной оси против часовой стрелки (в радианах), a q — константа, которая при умножении на 2π дает расстояние между последовательными витками спирали. Еще одним видом спирали является логарифмическая, представленная на рисунке ниже:



Для этой спирали произведение константы q на угол φ дает не r, а логарифм r. Швейцарский математик Якоб Бернулли был настолько впечатлен подобием всей спирали и любой ее части (то есть самоподобием), что повелел написать на своем надгробии такие слова: Eadem Mutata Resurgo, что в переводе означает «измененная, я вновь воскресаю». Точнее говоря, свойство, которым восхищался Бернулли, заключается в том, что сжатие или растяжение этой спирали равносильно ее повороту на определенный угол.



Рассмотрим любопытный пример двух многоугольных спиралей, подобных тем, что показаны на рисунке выше. Справа изображена бесконечная спираль. В ней каждая сторона относится к предыдущей как 1/q. Сумма длин всех сторон равна сумме ряда 1 + 1/q + 1/q>2 + 1/q>3 +…, равной q/(q — 1). Следовательно, эта спираль имеет конечную длину. Например, если мы выберем q = 1,05, сумма (то есть длина всех сторон) будет равняться 21.

Спираль слева построена по иному, но тоже очень простому правилу: большая сторона спирали равна 1, следующая — 1/2, следующая — 1/3, затем 1/4 и так далее. Известно, что этот ряд не сходится, то есть спираль на рисунке слева имеет бесконечную длину, а спираль на рисунке справа — конечную длину. Можно ли было предположить что-то подобное?


* * *

На основе графиков Ричардсон попытался выяснить причину столь заметных различий, которые могут достигать 20 %. Его объяснение столь же удивительно, сколь и очевидно: единица измерения, используемая одной страной, может быть намного меньше, чем единица измерения, применяемая в другой стране. В чем же заключались эксперименты Ричардсона? Допустим, мы фиксируем раствор циркуля, равный 10 см. Затем мы с помощью циркуля по карте измеряем протяженность береговой линии, непрерывно отсчитывая ее длину. Полученное значение является лишь приближенным, так как береговая линия на карте имеет выпуклости и вогнутости размерами меньше 10 см. Затем уменьшим раствор циркуля и установим его равным 1 см, после чего повторим измерения. Очевидно, что в этот раз результат измерений будет больше, так как ломаная линия, прочерченная циркулем, будет точнее соответствовать береговой линии. Здравый смысл подсказывает, что эти значения сходятся к некоторому конечному числу, которое и будет истинной длиной побережья или границы. Однако Ричардсон показал, что результат измерений будет бесконечно возрастать по мере уменьшения единицы измерения и увеличения масштаба карты. Этот удивительный факт известен под названием «эффект Ричардсона».



Приближенные вычисления длины береговой линии острова Мальорка, выполненные с различной точностью. Измерения слева производились отрезком большей длины, чем на иллюстрации справа. Нетрудно видеть, что точность измерения на рисунке справа выше. Удивительно, но в соответствии с эффектом Ричардсона с ростом точности пределом измерений будет не истинная длина береговой линии, а бесконечность.


В свое время научное сообщество проигнорировало исследования Ричардсона, однако сегодня они считаются крайне важными, так как дали толчок к изучению фракталов. Бенуа Мандельброт цитирует Ричардсона в известной статье 1967 г. под названием «Какова длина побережья Великобритании?». В этой статье Мандельброт объясняет, что понятие длины для объектов неправильной формы, например для побережья, не имеет смысла. Как следствие, математики определили число, которое являлось бы количественной оценкой площади подобных объектов неправильной формы. Это число — экстраполяция числа «привычных» измерений объектов классической геометрии (одно, два, три измерения и так далее). Следовательно, «неевклидовы» объекты неправильной формы подобного типа часто имеют дробное число измерений.


Все зависит от способа измерения

Геометрия Евклида, в которой число измерений может быть только целым, не отражает всей сути фигур неправильной формы. Эксперимент Ричардсона равносилен вычислению длины в разных масштабах. Если мы измерим длину побережья из космоса, то полученный результат будет меньше, чем если мы, подобно муравью, пройдем вдоль всего побережья, считая каждую песчинку.

Рассмотрим в качестве примера клубок ниток. Издалека он кажется точкой, иными словами, фигурой с нулем измерений. Если наблюдатель подойдет ближе, то увидит, что клубок напоминает сферу, то есть имеет три измерения. Если он еще приблизится, то увидит, что в клубок свернута одна нить; таким образом, клубок будет иметь всего одно измерение. Когда наблюдатель приблизится настолько, что сможет рассмотреть структуру нити, то клубок снова станет трехмерным, поскольку станут видны отдельные волокна, из которых состоит нить. Подобный процесс можно продолжать и далее. Таким образом, очевидно, что о числе измерений клубка ниток нельзя говорить объективно: все зависит от положения наблюдателя, то есть от масштаба наблюдений.


Рекомендуем почитать
Монеты - свидетели прошлого

Новая книга профессора Московского университета Г. А. Федорова-Давыдова написана в научно-популярной форме, ярко и увлекательно. Она представляет собой очерки истории денежного дела в античных государствах Средиземноморья, средневековой Западной Европе, странах Востока, на Руси (от первых «златников» и «сребреников» князя Владимира до реформ Петра 1)„ рассказывается здесь также о монетах нового времени; специальный раздел посвящен началу советской монетной чеканки. Автор показывает, что монеты являются интересным и своеобразным историческим источником.


Летопись электричества

Книга в легкой и доступной форме рассказывает об истории электротехники и немного касается самого начального этапа радиотехники. Автор дает общую картину развития знаний об электричестве, применения этих знаний в промышленности и технике. В книге содержится огромное количество материала, рисующего как древнейшие времена, так и современность с её проблемами науки и техники. В русской литературе — это первая попытка дать читателю систематическое изложение накопленных в течение веков фактов, которые представляют грандиозный путь развития учения об электричестве и его практического применения.


Погода интересует всех

Когда у собеседников темы для разговора оказываются исчерпанными, как правило, они начинают говорить о погоде. Интерес к погоде был свойствен человеку всегда и надо думать, не оставит его и в будущем. Метеорология является одной из древнейших областей знания Книга Пфейфера представляет собой очерк по истории развития метеорологии с момента ее зарождения и до современных исследований земной атмосферы с помощью ракет и спутников. Но, в отличие от многих популярных книг, освещающих эти вопросы, книга Пфейфера обладает большим достоинством — она знакомит читателя с интереснейшими проблемами, которые до сих пор по тем или иным причинам незаслуженно мало затрагиваются в популярной литературе.


Зеленый пожар

Сорняки — самые древние и злостные враги хлебороба. Зеленым пожаром охвачены в настоящее время все земледельческие районы земного шара. В книге рассказывается об истории и удивительной жизненной силе сорных растений, об ожесточенной борьбе земледельца с сорняками и путях победы над грозным противником. - Книга в увлекательной и популярной форме рассказывает о борьбе с самым древним и злостным врагом хлеборобов — сорняками (первое издание — 1981 г). В ней даны сведения об истории и биологии сорняков, об их взаимоотношениях с культурными растениями.


Пчелы. Что человек и пчела значат друг для друга

Пчелы гораздо древнее, чем люди: когда 4–5 миллионов лет назад предшественники Homo sapiens встретились с медоносными пчелами, те жили на Земле уже около 5 миллионов лет. Пчелы фигурируют в мифах и легендах Древних Египта, Рима и Греции, Индии и Скандинавии, стран Центральной Америки и Европы. От повседневной работы этих трудолюбивых опылителей зависит жизнь животных и людей. Международная организация The Earthwatch Institute официально объявила пчел самыми важными существами на планете, их вымирание будет означать конец человечества.


Лаять не на то дерево

Многие традиционные советы о том, как преуспеть в жизни, логичны, обоснованны… и откровенно ошибочны. В своей книге автор собрал невероятные научные факты, объясняющие, от чего на самом деле зависит успех и, что самое главное, как нам с вами его достичь. Для широкого круга читателей.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.


Дилемма заключенного и доминантные стратегии. Теория игр

Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.