Новый взгляд на мир. Фрактальная геометрия - [20]

Шрифт
Интервал

Идея определения размерности по индукции восходит к «Началам» Евклида, где неявно приводится похожая формулировка: говорят, что фигура является одномерной, если ее граница состоит из точек; двумерной, если ее граница образована кривыми; трехмерной, если ее граница состоит из поверхностей.

Пуанкаре заново рассмотрел этот вопрос, оперируя похожими терминами, и ввел понятие топологической размерности. Он дал такое определение: пространство имеет размерность n, если его можно каким-либо способом разделить пространством, имеющим размерность n — 1. Однако, чтобы это определение стало более строгим, нужно корректно определить значение формулировки «каким-либо способом разделить». В 1913 г. первую попытку уточнить это определение предпринял Брауэр, затем десять лет спустя Урысон. Каждый привел различные толкования, но для локально связных пространств они совпадают. Так, в настоящее время наиболее важными считаются три определения топологической размерности: индуктивное определение Урысона (и Менгера), индуктивное определение Брауэра (и Чеха), а также размерность Лебега, определенная посредством покрытий[16].

Топологическую размерность Лебега (далее мы будем именовать ее просто топологической размерностью) очень удобно использовать для множеств, имеющих неправильную структуру.

Наглядно изобразить топологическую размерность очень просто. Покрытием подмножества S на >n является семейство открытых множеств[17] таких, что их объединение содержит множество S. На рисунке показано покрытие кривой на >2.



Покрытие кривой с кратностью 2.

>(Источник иллюстраций на этой странице: Мария Изабель Бинимелис.)


Аналогичные действия можно выполнить для любой части заданной плоскости. Приведем простую аналогию. Пусть нужно закрасить определенную область зеленым цветом. У нас есть одна или несколько печатей, которые могут иметь круглую или другую форму. Покрытием этой области будет раскрашивание ее в зеленый цвет без промежутков. Очевидно, что некоторые участки будут покрыты несколько раз, поэтому они будут окрашены в более темный цвет. Выберем из всех таких участков один (или несколько) самого темного цвета, то есть такой, который был закрашен наибольшее число раз, и назовем это число кратностью покрытия. Взгляните на рисунок ниже.



Рассмотрим первое покрытие (слева) и обратим внимание на маленький участок, почти точку, закрашенный черным цветом: он покрыт пятью печатями, и нет никакого другого участка, который был бы покрыт большее число раз. Следовательно, кратность этого покрытия равна пяти. Можно ли уменьшить эту кратность? Иными словами, можно ли поставить печать на всех точках поверхности, не покрывая какую-либо точку пять раз? На рисунке справа видно, что это возможно: мы слегка уменьшили площадь печатей (каждая из них содержится внутри соответствующей печати, расположенной в том же месте на рисунке слева), и вся нужная область оказалась покрытой полностью. Это новое покрытие называется подпокрытием предыдущего. Для нового покрытия кратность уменьшилась до четырех.

Можно получить покрытие кратности 3, как показано на следующем рисунке, но покрытие кратности 2 уже невозможно.



Заданная область, каждый участок которой покрыт не более чем тремя печатями.

>(Источник: Мария Изабель Бинимелис.)


В целом говорят, что множество имеет топологическую размерность п, если наименьшая возможная кратность его покрытия равна n + 1. Следовательно, говорят, что топологическая размерность первой фигуры (кривой) равна 1, размерность второй фигуры (области) равна 2. Точка является 0-мерной, линия — одномерной, плоскость — двумерной, а евклидово пространство >n является n-мерным.

С этой точки зрения размерность произвольного пространства (точки, линии, поверхности и других) соответствует минимальному числу параметров, необходимых, чтобы описать различные точки этого пространства. Например, чтобы описать все точки плоскости, достаточно всего двух координат: абсциссы (которая, например, определяет длину) и ординаты (определяет ширину). Пространство требует наличия уже трех координат: длины, ширины и высоты.

Необходимость ввести определение топологической размерности была в значительной степени вызвана тем, что традиционное определение размерности (в котором фигурировали интуитивно понятные и неточные термины, например «тонкость») было поставлено под сомнение в последние годы XIX в. Первое определение следует из доказательства Кантора, которое подтверждает взаимно однозначное соответствие между множеством точек вещественной прямой >1 и вещественной плоскости >2.Второе определение основано на том, что существует непрерывная функция >1 на 

>2, открытая Пеано.


О кривых, покрывающих плоскость

Одна из задач вычислений — это выполнение различных измерений, например, измерение длин кривых, площадей фигур, объемов тел и так далее. Иногда точно измерить длину кривой непросто, но можно получить приближенный результат с очень хорошей точностью, используя спрямление кривой (приближение кривой ломаными линиями или полигональное приближение). Чем меньше отрезки ломаной линии, тем точнее результат. На следующем рисунке показано приближение синусоидальной кривой отрезками ломаной линии, расположенными так, что концы отрезков лежат на этой кривой.


Рекомендуем почитать
Антикитерский механизм: Самое загадочное изобретение Античности

Это уникальное устройство перевернуло наши представления об античном мире. Однако история Антикитерского механизма, названного так в честь греческого острова Антикитера, у берегов которого со дна моря были подняты его обломки, полна темных пятен. Многие десятилетия он хранился в Национальном археологическом музее Греции, не привлекая к себе особого внимания.В научном мире о его существовании знали, но даже ученые не могли поверить, что это не мистификация, и поразительный механизм, использовавшийся для расчета движения небесных тел, действительно дошел до нас из глубины веков.


Технологии против человека

Технологии захватывают мир, и грани между естественным и рукотворным становятся все тоньше. Возможно, через пару десятилетий мы сможем искать информацию в интернете, лишь подумав об этом, – и жить многие сотни лет, искусственно обновляя своё тело. А если так случится – то что будет с человечеством? Что, если технологии избавят нас от необходимости работать, от старения и болезней? Всемирно признанный футуролог Герд Леонгард размышляет, как изменится мир вокруг нас и мы сами. В основу этой книги легло множество фактов и исследований, с помощью которых автор предсказывает будущее человечества.


Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Профиль равновесия

В природе все взаимосвязано. Деятельность человека меняет ход и направление естественных процессов. Она может быть созидательной, способствующей обогащению природы, а может и вести к разрушению биосферы, к загрязнению окружающей среды. Главная тема книги — мысль о нашей ответственности перед потомками за природу, о возможностях и обязанностях каждого участвовать в сохранении и разумном использовании богатств Земли.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


История астрономии. Великие открытия с древности до Средневековья

Книга авторитетного британского ученого Джона Дрейера посвящена истории астрономии с древнейших времен до XVII века. Автор прослеживает эволюцию представлений об устройстве Вселенной, начиная с воззрений древних египтян, вавилонян и греков, освещает космологические теории Фалеса, Анаксимандра, Парменида и других греческих натурфилософов, знакомит с учением пифагорейцев и идеями Платона. Дрейер подробно описывает теорию концентрических планетных сфер Евдокса и Калиппа и геоцентрическую систему мироздания Птолемея.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Том 6. Четвертое измерение. Является ли наш мир тенью другой Вселенной?

Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.