Новый взгляд на мир. Фрактальная геометрия - [22]
Блестящий немецкий математик Давид Гильберт.
На рисунке показано, как на каждом шаге части кривой соединяются тремя отрезками, которые непрерывно уменьшаются в размерах. Именно так описал построение этой кривой сам Гильберт в 1891 г. в короткой статье всего на двух страницах. Существует стандартное построение этой же кривой, в основе которого лежит несколько иная фигура. Оставим поиски этого построения заинтересованному читателю. Отличие кривой Гильберта от кривой Пеано в том, что в первой на каждом шаге построения длины отрезков и квадратов уменьшаются в два раза, а в кривой Пеано — в три раза.
Существуют интересные вариации кривой Гильберта: в одной из них в качестве исходной фигуры используется перевернутая буква V, в другой, за авторством Карла Хансена, исходной фигурой является буква Н (очевидно, по первой букве фамилии Гильберта — Hilbert). Кривая Гильберта обладает еще одной любопытной особенностью: ее можно видоизменить так, что она будет покрывать объемную фигуру, как показано на рисунке:
Эта трехмерная версия кривой Гильберта имеет большое значение в устройствах передачи данных, в особенности там, где для выявления ошибок используется так называемый код Грея — вариация двоичного кода. В традиционном двоичном коде числа от 0 до 7 записываются так: 000, 001, 010, 011, 100, 101, 110, 111. Затем каждое число этой последовательности располагается в одной из вершин куба так, чтобы двоичные разряды соответствовали координатам этой вершины. Например, число 001 нужно расположить в точке с координатами (0, 0, 1). После этого числа нужно упорядочить, следуя вдоль кривой Гильберта, как показано на рисунке ниже.
Эта последовательность двоичных чисел является кодом Грея, который обладает особым свойством. При внимательном рассмотрении заметно, что соседние значения различаются только в одном разряде (одним битом информации), что не выполняется для традиционной последовательности чисел, где, например, за 001 следует 010 (эти числа отличаются двумя разрядами). Говоря техническим языком, расстояние Хэмминга между двумя соседними 3-битными числами равно 1. Если нам нужно закодировать не первые восемь натуральных чисел, а больше, то понадобится следующая итерация кривой Гильберта, с помощью которой мы закодируем числа от 0 до 31. Код Грея позволяет существенно снизить количество ошибок при передаче информации. В частности, он широко применяется в наземных сетях цифрового телевидения.
Кривая Гильберта также используется при цифровой обработке изображений. Если мы хотим распечатать изображение в градациях серого на лазерном принтере первого поколения, то нам понадобится приближенная бинарная модель изображения, так как принтер «понимает» только значение 0 или 1 (тонер/нет тонера). Для этого применяется так называемый дизеринг. Эта техника имитирует широкую палитру цветов, хотя в действительности используется крайне ограниченное число оттенков. Она также применяется при моделировании множества оттенков серого в двоичном коде.
На рисунке слева — исходное изображение в 256 оттенках серого (именно эта конкретная фотография обычно приводится в качестве примера в научных статьях, посвященных обработке изображений). На втором рисунке слева — увеличенное изображение с примененным эффектом дизеринга, который позволяет имитировать 256 оттенков серого, когда реальное число градаций серого меньше 256. Далее приведено еще два увеличенных изображения. Для генерации последнего использовалась кривая Гильберта.
Как правило, этот процесс обычно выглядит так: для преобразования изображения в 256 градаций серого используется проход по линиям или блокам пикселей. Каждому пикселю присваивается оттенок серого из сокращенной палитры цветов в зависимости от оттенков соседних пикселей таким образом, чтобы снизить общую ошибку. Как видно на втором рисунке, после применения дизеринга на изображении возникают характерные мелкие дефекты. Чтобы избавиться от них, вместо прохода вдоль горизонтальных линий используется обход вдоль кривой Гильберта, проходящей через все пиксели изображения. Преимущество этого метода заключается в том, что в этом случае отсутствуют ярко выраженные дефекты, которые нетрудно заметить при других способах обхода изображения.
После публикаций Пеано и Гильберта многие другие математики стали предлагать похожие примеры. Среди них были Хельге фон Кох, Поль Леви и Эрнесто Чезаро, Вацлав Серпинский и Исаак Шёнберг. Швейцарский математик Хельге фон Кох в 1904 г. опубликовал статью «Об одной непрерывной кривой, не имеющей касательных, построенной с помощью методов элементарной геометрии». Под этим пугающим названием скрывалось нечто очень простое и столь же удивительное. Рассмотрим отрезок горизонтальной прямой, имеющий единичную длину. Заменим исходный отрезок четырьмя отрезками длиной 1/3 и получим первую кривую для итеративного построения, которое показано на рисунке ниже:
Если построить три копии кривой Коха на сторонах равностороннего треугольника, получится так называемая снежинка Коха. Эта кривая обладает удивительным свойством: ее длина бесконечна, а площадь закрашенной области — нет.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.