Новый взгляд на мир. Фрактальная геометрия - [33]

Шрифт
Интервал

В следующей таблице приведены значения z, z>2, z>4, z>8, z>16, z>32 для трех разных комплексных чисел: внутри единичной окружности (иными словами, модуль этого числа меньше единицы), на единичной окружности и, наконец, вне единичной окружности. На рисунке приведено геометрическое представление всех трех случаев.




В таблице вверху приведены расчеты для трех типов орбит.

Орбита, описанная в левой части таблицы, стремится к началу координат; та, что в центре таблицы, описывает единичную окружность; та, что справа, уходит в бесконечность.

На рисунках представлено графическое изображение этих трех орбит на комплексной плоскости.


Мы видим, что для точки внутри окружности орбита стремится к началу координат, для точки вне окружности — уходит в бесконечность, а точка, которая находилась на единичной окружности, по-прежнему остается на ней. Чем больше модуль исходного числа, тем быстрее оно удаляется от единичной окружности. Таким образом, комплексная плоскость делится на две части: «пленников», которые находятся внутри единичной окружности, и точек вне ее, которым «удалось сбежать». В этом случае множество Жюлиа представляет собой единичную окружность — множество точек-«охранников». Заметим еще один факт (впоследствии он сыграет очень большую роль): множество Жюлиа инвариантно по отношению к квадратичной функции, то есть любая орбита, начало которой находится на множестве Жюлиа, останется на этом же множестве.

Заметим, что существуют две фиксированные точки: (0, 0) и (1, 0). В этом случае точка (0, 0) является аттрактором, так как к ней стремятся орбиты всех точек внутри окружности. Говорят, что в этом случае внутри единичной окружности располагается область притяжения аттрактора — точка (0, 0). Точка (1, 0) является неподвижной точкой — репеллером, так как рядом с ней существуют точки, например, (1, 01, 0), орбиты которых уходят в бесконечность.

Если мы будем считать бесконечность еще одной точкой плоскости и обозначим ее знаком <*>, то будем говорить, что точка °° является неподвижной, а ее область притяжения будет состоять из всех точек, лежащих вне единичной окружности.

Единичная окружность — простейший пример множества Жюлиа. Оно обладает теми же свойствами, что и большинство множеств Жюлиа: оно является границей области притяжения аттрактора (0, 0) и

, динамика в окрестности точек этого множества неустойчива.

Частный случай z>n+1 = z>n>2, который обычно записывается в виде z —> z>2, — это своеобразный вход в мир удивительных и прекрасных фрактальных множеств Жюлиа.

Чтобы получить изображение других множеств Жюлиа, например для с = 0,5 + 0,5i, нам понадобится помощь компьютера. В теории для каждой точки плоскости нужно подтвердить, что ее орбита стремится к нулю или к бесконечности. На практике это невозможно, поэтому, чтобы изобразить множество Жюлиа, нужно использовать альтернативные алгоритмы.

На следующем рисунке показана таблица с данными для орбит нескольких точек, а также изображение множества Жюлиа, соответствующего с = 0,5 + 0,5i.




Три орбиты, которые уходят в бесконечность.



Орбиты для некоторых точек при с = 0,5 + 0,5i.

В верхней таблице орбиты всех точек уходят в бесконечность. В нижней таблице все орбиты стремятся к определенной неподвижной точке (-0,409, 0,275).


При рассмотрении таблиц можно увидеть, что если начальная точка очень удалена от центра, то есть модуль ее радиус-вектора очень велик, то орбита этой точки будет уходить в бесконечность. Но начиная с какого значения выполняется это правило? К счастью, на этот вопрос существует точный ответ. В общем случае радиус окружности будет наибольшим из двух чисел: 2 и модуля с. Любая орбита, начальная точка которой лежит вне этой окружности, будет уходить в бесконечность. Этот результат крайне важен для определения множества Мандельброта, что мы продемонстрируем несколько позже.

На основе этого факта можно разработать алгоритм, который позволит точно определить множество точек-«пленников». Первым приближением границы для с = 0,5 + 0,5i будет окружность радиуса 2. Если мы запрограммируем этот алгоритм так, что он будет обрабатывать пиксели экрана (каждой точке будет соответствовать пиксель), то получим очень большое множество точек (в зависимости от выбранной точности). Тем не менее это множество будет конечным. Компьютер вычислит значение выражения на первой итерации и пометит определенным цветом точки, которые уже на первой итерации оказались вне окружности радиуса 2. Остальные точки будут помечены черным цветом. Граница множества черных точек будет вторым приближением множества Жюлиа. Для оставшихся черных точек (на каждой итерации их будет все меньше) произведем вторую итерацию вычислений и выделим цветом точки, которые окажутся вне круга радиуса 2. Остальные точки по-прежнему будут черного цвета.

Эти действия будут повторяться для всех точек черного цвета, которых с каждым разом будет становиться все меньше, пока изменения множества черных точек не станут неразличимы на экране. Этот алгоритм, который называется алгоритмом времени убегания (escape time), для с = —1 дает следующее изображение множества Жюлиа:


Рекомендуем почитать
Антикитерский механизм: Самое загадочное изобретение Античности

Это уникальное устройство перевернуло наши представления об античном мире. Однако история Антикитерского механизма, названного так в честь греческого острова Антикитера, у берегов которого со дна моря были подняты его обломки, полна темных пятен. Многие десятилетия он хранился в Национальном археологическом музее Греции, не привлекая к себе особого внимания.В научном мире о его существовании знали, но даже ученые не могли поверить, что это не мистификация, и поразительный механизм, использовавшийся для расчета движения небесных тел, действительно дошел до нас из глубины веков.


Технологии против человека

Технологии захватывают мир, и грани между естественным и рукотворным становятся все тоньше. Возможно, через пару десятилетий мы сможем искать информацию в интернете, лишь подумав об этом, – и жить многие сотни лет, искусственно обновляя своё тело. А если так случится – то что будет с человечеством? Что, если технологии избавят нас от необходимости работать, от старения и болезней? Всемирно признанный футуролог Герд Леонгард размышляет, как изменится мир вокруг нас и мы сами. В основу этой книги легло множество фактов и исследований, с помощью которых автор предсказывает будущее человечества.


Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Профиль равновесия

В природе все взаимосвязано. Деятельность человека меняет ход и направление естественных процессов. Она может быть созидательной, способствующей обогащению природы, а может и вести к разрушению биосферы, к загрязнению окружающей среды. Главная тема книги — мысль о нашей ответственности перед потомками за природу, о возможностях и обязанностях каждого участвовать в сохранении и разумном использовании богатств Земли.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


История астрономии. Великие открытия с древности до Средневековья

Книга авторитетного британского ученого Джона Дрейера посвящена истории астрономии с древнейших времен до XVII века. Автор прослеживает эволюцию представлений об устройстве Вселенной, начиная с воззрений древних египтян, вавилонян и греков, освещает космологические теории Фалеса, Анаксимандра, Парменида и других греческих натурфилософов, знакомит с учением пифагорейцев и идеями Платона. Дрейер подробно описывает теорию концентрических планетных сфер Евдокса и Калиппа и геоцентрическую систему мироздания Птолемея.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Том 6. Четвертое измерение. Является ли наш мир тенью другой Вселенной?

Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.