Новый взгляд на мир. Фрактальная геометрия - [33]
В следующей таблице приведены значения z, z>2, z>4, z>8, z>16, z>32 для трех разных комплексных чисел: внутри единичной окружности (иными словами, модуль этого числа меньше единицы), на единичной окружности и, наконец, вне единичной окружности. На рисунке приведено геометрическое представление всех трех случаев.
В таблице вверху приведены расчеты для трех типов орбит.
Орбита, описанная в левой части таблицы, стремится к началу координат; та, что в центре таблицы, описывает единичную окружность; та, что справа, уходит в бесконечность.
На рисунках представлено графическое изображение этих трех орбит на комплексной плоскости.
Мы видим, что для точки внутри окружности орбита стремится к началу координат, для точки вне окружности — уходит в бесконечность, а точка, которая находилась на единичной окружности, по-прежнему остается на ней. Чем больше модуль исходного числа, тем быстрее оно удаляется от единичной окружности. Таким образом, комплексная плоскость делится на две части: «пленников», которые находятся внутри единичной окружности, и точек вне ее, которым «удалось сбежать». В этом случае множество Жюлиа представляет собой единичную окружность — множество точек-«охранников». Заметим еще один факт (впоследствии он сыграет очень большую роль): множество Жюлиа инвариантно по отношению к квадратичной функции, то есть любая орбита, начало которой находится на множестве Жюлиа, останется на этом же множестве.
Заметим, что существуют две фиксированные точки: (0, 0) и (1, 0). В этом случае точка (0, 0) является аттрактором, так как к ней стремятся орбиты всех точек внутри окружности. Говорят, что в этом случае внутри единичной окружности располагается область притяжения аттрактора — точка (0, 0). Точка (1, 0) является неподвижной точкой — репеллером, так как рядом с ней существуют точки, например, (1, 01, 0), орбиты которых уходят в бесконечность.
Если мы будем считать бесконечность еще одной точкой плоскости и обозначим ее знаком <*>, то будем говорить, что точка °° является неподвижной, а ее область притяжения будет состоять из всех точек, лежащих вне единичной окружности.
Единичная окружность — простейший пример множества Жюлиа. Оно обладает теми же свойствами, что и большинство множеств Жюлиа: оно является границей области притяжения аттрактора (0, 0) и
Частный случай z>n+1 = z>n>2, который обычно записывается в виде z —> z>2, — это своеобразный вход в мир удивительных и прекрасных фрактальных множеств Жюлиа.
Чтобы получить изображение других множеств Жюлиа, например для с = 0,5 + 0,5i, нам понадобится помощь компьютера. В теории для каждой точки плоскости нужно подтвердить, что ее орбита стремится к нулю или к бесконечности. На практике это невозможно, поэтому, чтобы изобразить множество Жюлиа, нужно использовать альтернативные алгоритмы.
На следующем рисунке показана таблица с данными для орбит нескольких точек, а также изображение множества Жюлиа, соответствующего с = 0,5 + 0,5i.
Три орбиты, которые уходят в бесконечность.
Орбиты для некоторых точек при с = 0,5 + 0,5i.
В верхней таблице орбиты всех точек уходят в бесконечность. В нижней таблице все орбиты стремятся к определенной неподвижной точке (-0,409, 0,275).
При рассмотрении таблиц можно увидеть, что если начальная точка очень удалена от центра, то есть модуль ее радиус-вектора очень велик, то орбита этой точки будет уходить в бесконечность. Но начиная с какого значения выполняется это правило? К счастью, на этот вопрос существует точный ответ. В общем случае радиус окружности будет наибольшим из двух чисел: 2 и модуля с. Любая орбита, начальная точка которой лежит вне этой окружности, будет уходить в бесконечность. Этот результат крайне важен для определения множества Мандельброта, что мы продемонстрируем несколько позже.
На основе этого факта можно разработать алгоритм, который позволит точно определить множество точек-«пленников». Первым приближением границы для с = 0,5 + 0,5i будет окружность радиуса 2. Если мы запрограммируем этот алгоритм так, что он будет обрабатывать пиксели экрана (каждой точке будет соответствовать пиксель), то получим очень большое множество точек (в зависимости от выбранной точности). Тем не менее это множество будет конечным. Компьютер вычислит значение выражения на первой итерации и пометит определенным цветом точки, которые уже на первой итерации оказались вне окружности радиуса 2. Остальные точки будут помечены черным цветом. Граница множества черных точек будет вторым приближением множества Жюлиа. Для оставшихся черных точек (на каждой итерации их будет все меньше) произведем вторую итерацию вычислений и выделим цветом точки, которые окажутся вне круга радиуса 2. Остальные точки по-прежнему будут черного цвета.
Эти действия будут повторяться для всех точек черного цвета, которых с каждым разом будет становиться все меньше, пока изменения множества черных точек не станут неразличимы на экране. Этот алгоритм, который называется алгоритмом времени убегания (escape time), для с = —1 дает следующее изображение множества Жюлиа:
В книге в занимательной форме рассказывается об истории создания девяти известных литературных произведений: от жизненного факта, положенного в основу, до литературного воплощения.
Месяцы сочинительства и переделок написанного, мыканья по издательствам, кропотливой работы по продвижению собственной книги — так начиналась карьера бизнес-автора Екатерины Иноземцевой. Спустя три года в школе писательства, основанной Екатериной, обучались 1287 учеников, родилось 2709 статей, 1756 из которых опубликовали крупные СМИ. И главное: каждый из выпускников получил знания о том, как писательство помогает развить личный бренд. В этой книге — опыт автора в создании полезного и интересного контента, взаимодействия со СМИ и поиска вашего кода популярности.
В книге рассказывается, как родилась и развивалась физиология высшей нервной деятельности, какие непостижимые прежде тайны были раскрыты познанием за сто с лишним лет существования этой науки. И о том, как в результате проникновения физиологии в духовную, психическую деятельность человека, на стыке физиологии и математики родилась новая наука — кибернетика.
Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».
Настоящая книга посвящена жизни и деятельности выдающегося русского агронома И. А. Стебута (1833— 1923). Свыше полувека он занимал наиболее видное место среди деятелей русской агрономии. С именем Стебута связаны последние годы жизни первого сельскохозяйственного высшего учебного заведения в нашей стране — Горыгорецкого земледельческого института (ныне Белорусская сельскохозяйственная академия) и первые тридцать лет жизни Петровской академии (ныне Московская сельскохозяйственная Академия имени К. А. Тимирязева), в которой он возглавлял кафедру земледелия.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.
Какова взаимосвязь между играми и математикой? Математические игры — всего лишь развлечение? Или их можно использовать для моделирования реальных событий? Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.