Новый взгляд на мир. Фрактальная геометрия - [11]

Шрифт
Интервал

Например, для расчета евклидовой метрики, то есть расстояния между двумя точками с известными координатами, нужно построить треугольник: одной стороной этого треугольника будет отрезок, соединяющий данные точки, двумя другими сторонами будут проекции этого отрезка на линии, которые параллельны перпендикулярным осям координат и проходят через данные точки. Таким образом, в полученном треугольнике можно будет вычислить гипотенузу по теореме Пифагора, как показано на следующем рисунке:



Евклидово расстояние (метрика) между точками Р и Q равно гипотенузе прямоугольного треугольника, получаемого построением прямых, параллельных осям координат X, Y и проходящих через точки Р и Q. Длина искомой гипотенузы вычисляется по теореме Пифагора.


МЕТРИКА МАНХЭТТЕНА

Еще одним примером метрики, эквивалентной евклидовой метрике, является так называемое манхэттенское расстояние, рассчитываемое по формуле d((х>1,у), (х>2,у>2)) = |x>2 - x>1 | + |y>2 - y>1|. Эта метрика измеряет расстояние, пройденное пешеходом между двумя точками в городе, разделенном на прямоугольные кварталы. И снова мы видим, что плоскость сама по себе не является евклидовой или неевклидовой, а ее свойства зависят от используемой метрики.



* * *

Риман вновь изучил основные положения евклидовой геометрии. Проанализировав второй постулат, гласящий, что «ограниченную прямую можно непрерывно продолжать по прямой», он заметил, что это положение следует отличать от утверждения «всякая прямая является бесконечной». Он пришел к выводу, что в рамках этого нового подхода ко второму постулату необходимо отказаться от пятого постулата. Риман заменил его следующей фразой: «любые две прямые пересекаются». Путем подобных рассуждений он пришел к так называемой эллиптической геометрии.

Этот концептуальный переход будет проще понять, если мы рассмотрим геометрию поверхности Земли. Какую форму имеют кратчайшие линии, соединяющие две данные точки, то есть геодезические линии? Учтем, что они будут иметь наименьшую кривизну, а наименьшей кривизне соответствует наибольший радиус окружности. Следовательно, эти линии будут лежать на больших кругах земного шара, например на экваторе или меридиане. Этот результат, относящийся к сферической геометрии, прекрасно известен пилотам дальнемагистральных самолетов. Если самолет находится в одной точке экватора, а нужно попасть в другую точку экватора, то пилот должен следовать вдоль линии экватора. Однако если самолет находится в точке с координатой 30° северной широты, а пункт назначения находится на этой же широте, то кратчайший путь будет проходить ближе к северу. Теперь становится понятно, почему самолеты, следующие, например, из Парижа на Гавайи, летят через Гренландию, хотя Гавайи находятся южнее Парижа.



Геодезическая линия (кратчайший путь между двумя данными точками) от Парижа до Гавайских островов проходит через Гренландию и Канаду.


Чтобы найти кратчайшую линию, соединяющую две точки Земли, нужно найти плоскость, проходящую через эти точки и центр Земли, затем провести линию пересечения найденной плоскости и поверхности Земли, как показано на следующем рисунке:



Если говорить о параллельности прямых, то нетрудно заметить, что в сферической геометрии подобного понятия не существует, так как любые две «прямые» (большие круги) пересекаются. Треугольники на поверхности земного шара могут иметь два или даже три прямых угла: чтобы построить такой треугольник, достаточно поместить две его вершины на экваторе, а третью — на одном из полюсов. В отличие от евклидовой геометрии, где все треугольники имеют сумму углов, равную 180°, в гиперболической и сферической геометрии все обстоит совершенно иначе. В сферической геометрии сумма углов треугольника всегда больше 180° и различается у разных треугольников. В одних треугольниках она может быть равной 190°, в других — 250°. Однако доказано, что два треугольника одной и той же площади имеют равную сумму углов.



Треугольник, построенный на поверхности сферы. Сумма углов этого треугольника больше 180°.


ГЕОМЕТРИЯ ПРОСТРАНСТВА

Какая из трех геометрий «настоящая»? Какая из трех геометрий, о которых мы рассказали выше, лучше описывает реальный мир? Со временем стало понятно, что геометрия Евклида является полностью приемлемым приближением реальности, если речь идет об объектах, сопоставимых по масштабу с Землей, но на больших расстояниях все уже не столь очевидно. Если мы попробуем измерить расстояния на поверхности сферы и найти кратчайшие расстояния на ней, то поймем, что наш мир описывается эллиптической геометрией (геометрией Римана). При путешествиях со скоростями, близкими к скорости света, пространство-время будет описываться геометрией Минковского, которая является неевклидовой. Но что происходит во Вселенной вдали от поверхности Земли, если не брать в расчет время? Действительно ли мы живем во вселенной, пространство которой подчиняется законам геометрии Евклида?

Гаусс по просьбе короля Ганновера некоторое время занимался геодезическими исследованиями. В ходе исследований ему потребовалось измерить углы треугольника, образованного тремя горными вершинами, отстоящими друг от друга на расстояние около 50 миль. Отклонение полученной суммы углов от 180° было меньше допустимой ошибки измерений; таким образом, найденная сумма углов треугольника соответствовала всем трем гипотезам. В свою очередь, Лобачевский заметил, что треугольник, вершины которого расположены на Земле, будет слишком мал, чтобы заметить расхождения с евклидовой геометрией. Лобачевский занялся астрономическими исследованиями, но ему также не удалось прийти к какому-либо выводу, так как разница при измерении расстояний между Землей и Солнцем составила менее одной тысячной секунды. Тогда он обратился к треугольникам большего размера и занялся наблюдениями параллакса звезд. Однако ни ему, ни кому-то другому не удалось найти треугольник, где сумма углов отличалась бы от 180°, несмотря на то что в гиперболической геометрии эта разница возрастает с увеличением площади треугольника.


Рекомендуем почитать
Антикитерский механизм: Самое загадочное изобретение Античности

Это уникальное устройство перевернуло наши представления об античном мире. Однако история Антикитерского механизма, названного так в честь греческого острова Антикитера, у берегов которого со дна моря были подняты его обломки, полна темных пятен. Многие десятилетия он хранился в Национальном археологическом музее Греции, не привлекая к себе особого внимания.В научном мире о его существовании знали, но даже ученые не могли поверить, что это не мистификация, и поразительный механизм, использовавшийся для расчета движения небесных тел, действительно дошел до нас из глубины веков.


Технологии против человека

Технологии захватывают мир, и грани между естественным и рукотворным становятся все тоньше. Возможно, через пару десятилетий мы сможем искать информацию в интернете, лишь подумав об этом, – и жить многие сотни лет, искусственно обновляя своё тело. А если так случится – то что будет с человечеством? Что, если технологии избавят нас от необходимости работать, от старения и болезней? Всемирно признанный футуролог Герд Леонгард размышляет, как изменится мир вокруг нас и мы сами. В основу этой книги легло множество фактов и исследований, с помощью которых автор предсказывает будущее человечества.


Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Профиль равновесия

В природе все взаимосвязано. Деятельность человека меняет ход и направление естественных процессов. Она может быть созидательной, способствующей обогащению природы, а может и вести к разрушению биосферы, к загрязнению окружающей среды. Главная тема книги — мысль о нашей ответственности перед потомками за природу, о возможностях и обязанностях каждого участвовать в сохранении и разумном использовании богатств Земли.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


История астрономии. Великие открытия с древности до Средневековья

Книга авторитетного британского ученого Джона Дрейера посвящена истории астрономии с древнейших времен до XVII века. Автор прослеживает эволюцию представлений об устройстве Вселенной, начиная с воззрений древних египтян, вавилонян и греков, освещает космологические теории Фалеса, Анаксимандра, Парменида и других греческих натурфилософов, знакомит с учением пифагорейцев и идеями Платона. Дрейер подробно описывает теорию концентрических планетных сфер Евдокса и Калиппа и геоцентрическую систему мироздания Птолемея.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Том 6. Четвертое измерение. Является ли наш мир тенью другой Вселенной?

Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.