Новый взгляд на мир. Фрактальная геометрия - [13]

Шрифт
Интервал



Графическое изображение броуновского движения частицы. Можно оценить сложность траектории и ее самоподобие в различных масштабах. На нижней иллюстрации приведено увеличенное изображение траектории движения между точками А и В верхнего изображения.


Строго говоря, траектория броуновской частицы не отражает физическую действительность. Положение частицы фиксировалось каждые 30 с и обозначалось точкой, затем эти точки соединялись прямыми. Следовательно, физическую действительность отражают только точки, которые обозначают положение броуновской частицы по прошествии определенного промежутка времени. Так, если мы рассмотрим две соседние точки А и В, будем обозначать положение частицы с интервалом не в 30 с, а в 0,3 с и будем соединять полученные точки прямыми, то снова получим ломаную линию той же сложности, но меньших размеров. Можно выбрать еще меньший интервал, например 0,003 с, но и в этом случае ситуация принципиально не изменится. Траектория броуновской частицы имеет одинаково сложную структуру вне зависимости от выбора временного интервала наблюдений.

Интересно, что этот факт заметил еще Перрен в 1906 г. В частности, он обратил внимание на то, что для выбранной точки траектории броуновской частицы нельзя провести касательную, и отметил:

«Говоря языком геометрии, кривые, не имеющие касательных, могут считаться правилом, в то время как правильные кривые — такие, например, как окружность, — любопытным, но весьма частным случаем.

<…> Те, кто впервые слышит о кривых без касательных, часто склонны полагать, что в природе не существует ни подобных сложных конструкций, ни даже намека на них.

Не покидая экспериментально подтверждаемой реальности, мы наблюдаем под микроскопом проявление броуновского движения на примере малой частицы, взвешенной в толще жидкости. Мы видим, что направление прямой, соединяющей точки, соответствующие двум очень близким во времени положениям частицы, изменяется по мере уменьшения временного промежутка между двумя измерениями совершенно беспорядочно. Беспристрастный наблюдатель заключит из этого, что он имеет дело с кривой, к которой нельзя провести касательную».

Комментарий Перрена остался без внимания, и этим вопросом никто не занимался до конца 1960-х годов, когда французский и американский математик Бенуа Мандельброт вновь поднял эту тему. Если бы исследователи уделили больше внимания наблюдениям Перрена в начале века, то фундамент нового раздела геометрии был бы заложен на шесть десятилетий раньше.

Бенуа Мандельброт родился в Польше в 1924 г. в семье литовских евреев и в 1936 году эмигрировал во Францию, где поселился его дядя Шолем — один из участников и основателей группы Бурбаки[13]. Члены группы Бурбаки, в частности, отрицали возможность применения геометрических фигур и графиков для иллюстрации понятий или доказательств: они считали, что зрение может обманывать разум.

В 1945 г. дядя порекомендовал Бенуа ознакомиться с 300-страничной рукописью французского математика Гастона Жюлиа под названием «Записка о приближении рациональных функций». В соответствии с идеями школы, членом которой он являлся, Шолем Мандельбройт посоветовал племяннику забыть о геометрии. Мандельброт не последовал совету дяди, хотя и обратился к рукописи лишь в 1970 г., когда с помощью компьютеров в исследовательском центре IBM имени Томаса Джона Уотсона получил иллюстрации, удивившие научное сообщество высоким уровнем детализации. Позднее эти иллюстрации стали называться множествами Мандельброта.

Вместе со своими предшественниками Мандельброт вывел на передний план в математике и естественных науках новую дисциплину, которая приобрела огромное значение. Этой дисциплиной была фрактальная геометрия.

«Фрактальная геометрия заставит вас на все смотреть другими глазами. Дальше читать опасно. Вы рискуете потерять свое детское видение облаков, лесов, галактик, листьев, перьев, цветов, скал, гор, бегущих ручьев, ковров, кирпичей и многого другого. Ваше восприятие этих вещей никогда больше не будет прежним».

Так начинается книга «Фракталы повсюду» (Fractals Everywhere) английского математика Майкла Барнсли, профессора Австралийского национального университета и знаменитого исследователя в этой области. По его мнению, фрактальная геометрия — это прежде всего новый язык. Следуя аналогии между геометрией и лингвистикой, приведенной в разделе этой книги об урбанистике, и используя метафору, придуманную исследователями Хартмутом Юргенсом, Хайнцем-Отто Пайтгеном и Дитмаром Заупе, рассмотрим некоторые фундаментальные свойства этого раздела геометрии.

Алфавит западных языков (например, латыни) имеет ограниченное число символов. В восточных языках, например в китайском, количество различных символов огромно. В западных языках слова, имеющие смысл, образуются путем сочетания букв. В языках Востока, напротив, символы сами по себе обладают значением. Аналогично западным языкам традиционная геометрия (например, евклидова или риманова) оперирует немногочисленными элементами, в частности прямыми, окружностями и так далее. С их помощью создаются другие, более сложные конструкции, обладающие определенным смыслом в зависимости от контекста.


Рекомендуем почитать
Антикитерский механизм: Самое загадочное изобретение Античности

Это уникальное устройство перевернуло наши представления об античном мире. Однако история Антикитерского механизма, названного так в честь греческого острова Антикитера, у берегов которого со дна моря были подняты его обломки, полна темных пятен. Многие десятилетия он хранился в Национальном археологическом музее Греции, не привлекая к себе особого внимания.В научном мире о его существовании знали, но даже ученые не могли поверить, что это не мистификация, и поразительный механизм, использовавшийся для расчета движения небесных тел, действительно дошел до нас из глубины веков.


Технологии против человека

Технологии захватывают мир, и грани между естественным и рукотворным становятся все тоньше. Возможно, через пару десятилетий мы сможем искать информацию в интернете, лишь подумав об этом, – и жить многие сотни лет, искусственно обновляя своё тело. А если так случится – то что будет с человечеством? Что, если технологии избавят нас от необходимости работать, от старения и болезней? Всемирно признанный футуролог Герд Леонгард размышляет, как изменится мир вокруг нас и мы сами. В основу этой книги легло множество фактов и исследований, с помощью которых автор предсказывает будущее человечества.


Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Профиль равновесия

В природе все взаимосвязано. Деятельность человека меняет ход и направление естественных процессов. Она может быть созидательной, способствующей обогащению природы, а может и вести к разрушению биосферы, к загрязнению окружающей среды. Главная тема книги — мысль о нашей ответственности перед потомками за природу, о возможностях и обязанностях каждого участвовать в сохранении и разумном использовании богатств Земли.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


История астрономии. Великие открытия с древности до Средневековья

Книга авторитетного британского ученого Джона Дрейера посвящена истории астрономии с древнейших времен до XVII века. Автор прослеживает эволюцию представлений об устройстве Вселенной, начиная с воззрений древних египтян, вавилонян и греков, освещает космологические теории Фалеса, Анаксимандра, Парменида и других греческих натурфилософов, знакомит с учением пифагорейцев и идеями Платона. Дрейер подробно описывает теорию концентрических планетных сфер Евдокса и Калиппа и геоцентрическую систему мироздания Птолемея.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Том 6. Четвертое измерение. Является ли наш мир тенью другой Вселенной?

Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.