Новый взгляд на мир. Фрактальная геометрия - [10]

Шрифт
Интервал

* * *

Использование нового постулата привело к созданию новой совокупности теорем и выводов, которую стали называть гиперболической геометрией. Лобачевский и Бойяи пришли к необычным выводам: через одну точку проходит бесконечно много прямых, параллельных данной; сумма углов треугольника меньше 180° для двух данных параллельных прямых существует третья прямая, перпендикулярная одной из них и параллельная другой, и так далее.

Все это противоречило интуиции: подобную ситуацию нельзя было представить, не переосмыслив понятия прямой, плоскости и другие. Тем не менее с точки зрения логики новая геометрия была абсолютно корректной. Это вызвало крупный кризис в математике XIX в., который наложился на другие противоречия той эпохи. Как бы то ни было, в трудах Лобачевского и Бойяи было окончательно показано, что постулат о параллельности прямых не связан с остальными и что Евклид совершенно справедливо включил его в число постулатов, так как его нельзя логически вывести из предыдущих.


Немного топологии

Немецкий математик Август Мёбиус (1790–1868), современник Бойяи и Лобачевского, известен благодаря ленте, носящей его имя. Чтобы сделать ленту Мёбиуса, достаточно взять полоску бумаги и соединить ее концы, повернув один из них на 180°. Если мы «пройдем» вдоль полученной поверхности, то обойдем всю ленту целиком и попадем в исходную точку, не переходя на «другую сторону», которой фактически не существует. Если мы разрежем ленту вдоль по линии, равноудаленной от краев, то получим не две ленты Мёбиуса, а одну в два раза большей длины.



Лента Мёбиуса — поверхность, соединенная «двумя сторонами».


Это приводит к удивительному результату: согласно Мартину Гарднеру, лента Мёбиуса, строго говоря, не является двумерным объектом, так как имеет определенную толщину (ведь не существует листа бумаги с нулевой толщиной). Если мы будем рассматривать ленту Мёбиуса как трехмерный объект, то увидим, что ее поперечное сечение имеет форму прямоугольника. Саму ленту в этом случае следует рассматривать как «скрученную призму». Если бы ее сечение имело форму четырехугольника, то перед тем как склеить два конца ленты, мы могли бы повернуть их друг относительно друга всего на четверть оборота, на пол-оборота (как обычную ленту Мёбиуса) или на любое другое число оборотов. А если бы ее сечение имело форму пятиугольника, а не четырехугольника? Какой объект получился бы в этом случае? Изучением подобных объектов и всех геометрических тел, которые остаются неизменными после различных преобразований, занимается область математики под названием топология, о которой мы поговорим в следующих главах.


Путешествие вокруг Гренландии. Модель Вселенной

Спустя несколько лет после открытия гиперболической геометрии, в 1851 г., немецкий математик Бернхард Риман (1826–1866), ученик Гаусса, выступил с обязательным докладом в Гёттингенском университете, чтобы получить возможность претендовать на пост приват-доцента. Этот доклад получил невероятную известность. В нем Риман обрисовал новое видение геометрии, уделив основное внимание изучению многообразий с произвольным числом измерений в различных пространствах. Используя интуитивно понятный язык и не приводя доказательств, он ввел понятие дифференцируемого многообразия (обобщение понятия дифференцируемой поверхности). Понятие «многообразие» содержит отсылку к изменяющимся координатам, которые описывают совокупность точек некоторого объекта, а прилагательное «дифференцируемое» означает, что многообразие является гладким и не содержит складок или разрывов. Согласно Риману, классические поверхности являются двумерными многообразиями, кривые — одномерными многообразиями, а точки имеют число измерений, равное нулю. Также существуют трехмерные и многомерные многообразия, которые, однако, не так просто изобразить графически.

Кульминацией первой части доклада стало определение понятия тензора кривизны, которое является обобщением понятия гауссовой кривизны на многообразиях. Кривизна кривой в точке рассчитывается путем построения соприкасающейся окружности и вычисления величины, обратной радиусу этой окружности. Так, кривизна окружности радиуса 2 во всех точках будет равна 0,5, а прямая будет иметь кривизну, равную нулю, так как соприкасающаяся окружность для этой прямой будет иметь бесконечно большой радиус.

Очевидно, что это определение непросто обобщить для всей поверхности, так как для каждой точки поверхности можно построить бесконечное множество соприкасающихся окружностей. Какую из них нужно выбрать? На этот вопрос ответил Риман, разработав так называемый тензор кривизны, причем не только для поверхностей, но и для многообразий с произвольным числом измерений.



На этой иллюстрации показано, что с увеличением кривизны радиус соприкасающейся окружности уменьшается.

>(Источник: Мария Изабель Бинимелис.)


Во второй части доклада Риман рассмотрел модель, которая наилучшим образом объяснила бы физическое пространство — пространство, в котором мы живем. Сколько в нем измерений? Какова его геометрия?

В трактовке Римана любое пространство (будь то плоскость, трехмерное пространство или любое другое) можно изучить с помощью дифференцируемого многообразия. Если ввести на этом многообразии понятие расстояния, или метрику, то мы определим геодезические линии (напомним, что это кратчайшие линии, соединяющие две любые точки поверхности) и геометрию на этом многообразии. Так, плоскость сама по себе не является евклидовой или неевклидовой. Лишь введение евклидовой метрики на плоскости подтверждает правильность пятого постулата Евклида, и, как следствие, плоскость становится евклидовой. Если ввести на этой плоскости другую метрику, то этот постулат, возможно, перестанет выполняться.


Рекомендуем почитать
Антикитерский механизм: Самое загадочное изобретение Античности

Это уникальное устройство перевернуло наши представления об античном мире. Однако история Антикитерского механизма, названного так в честь греческого острова Антикитера, у берегов которого со дна моря были подняты его обломки, полна темных пятен. Многие десятилетия он хранился в Национальном археологическом музее Греции, не привлекая к себе особого внимания.В научном мире о его существовании знали, но даже ученые не могли поверить, что это не мистификация, и поразительный механизм, использовавшийся для расчета движения небесных тел, действительно дошел до нас из глубины веков.


Технологии против человека

Технологии захватывают мир, и грани между естественным и рукотворным становятся все тоньше. Возможно, через пару десятилетий мы сможем искать информацию в интернете, лишь подумав об этом, – и жить многие сотни лет, искусственно обновляя своё тело. А если так случится – то что будет с человечеством? Что, если технологии избавят нас от необходимости работать, от старения и болезней? Всемирно признанный футуролог Герд Леонгард размышляет, как изменится мир вокруг нас и мы сами. В основу этой книги легло множество фактов и исследований, с помощью которых автор предсказывает будущее человечества.


Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Профиль равновесия

В природе все взаимосвязано. Деятельность человека меняет ход и направление естественных процессов. Она может быть созидательной, способствующей обогащению природы, а может и вести к разрушению биосферы, к загрязнению окружающей среды. Главная тема книги — мысль о нашей ответственности перед потомками за природу, о возможностях и обязанностях каждого участвовать в сохранении и разумном использовании богатств Земли.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


История астрономии. Великие открытия с древности до Средневековья

Книга авторитетного британского ученого Джона Дрейера посвящена истории астрономии с древнейших времен до XVII века. Автор прослеживает эволюцию представлений об устройстве Вселенной, начиная с воззрений древних египтян, вавилонян и греков, освещает космологические теории Фалеса, Анаксимандра, Парменида и других греческих натурфилософов, знакомит с учением пифагорейцев и идеями Платона. Дрейер подробно описывает теорию концентрических планетных сфер Евдокса и Калиппа и геоцентрическую систему мироздания Птолемея.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Том 6. Четвертое измерение. Является ли наш мир тенью другой Вселенной?

Нечасто математические теории опускаются с высоких научных сфер до уровня массовой культуры. Тем не менее на рубеже XIX и XX веков люди были увлечены возможностью существования других измерений за пределами нашей трехмерной реальности. Благодаря ученым, которые использовали четвертое измерение для описания Вселенной, эта идея захватила воображение масс. Вопросом многомерности нашего мира интересовались философы, богословы, мистики, писатели и художники. Попробуем и мы проанализировать исследования математиков и порассуждать о том, насколько реально существование других измерений.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.