Математические чудеса и тайны - [6]
В качестве простейшего счетного приспособления при нахождении числовых значений карт можно использовать пальцы рук. Показывающий при этом держит руки на коленях, а карты (медленно) сдаются кем-нибудь из присутствующих. Пальцы перенумеровываются слева направо от 1 до 10. При появлении карты приподымается или опускается соответствующий палец. Валеты отмечаются перемещением левой руки вперед по ноге или назад, дамы — такими же движениями правой руки. Короли не принимаются во внимание. За мастями можно следить, двигая носками ботинок так, как это объяснялось выше.
Пользуясь пальцами как счетным приспособлением, можно находить числовые значения не только одной, но и нескольких вынутых из колоды карт, при условии, что эти значения не совпадают друг с другом. Для этого нужно лишь отметить, какие пальцы будут приподняты при окончанни раскладки (или какая рука продвинута вперед). Конечно, при этом нужно знать, сколько было спрятано карт, так как определить, что отсутствует король, можно только, не принимая во внимание при подсчетах одной карты.
Фокусы, основанные на различии цветов и мастей
Фокус с королями и дамами
Из колоды выбирают королей и дам и раскладывают их в две кучки: короли отдельно, дамы отдельно.
Кучки переворачивают лицевой стороной вниз и укладывают одну на другую. Зрители просят «снять» нашу колоду из восьми карт один или несколько раз.
Показывающий убирает кучку за спину и тут же открывает перед зрителями две карты. Оказывается, что это король и дама одной масти. С остальными тремя парами можно продемонстрировать то же самое.
Объяснение. Показывающему следует позаботиться лишь о том, чтобы в двух первоначальных кучках последовательность мастей была одинаковой.
«Снятие» этой последовательности не нарушит. За спиной показывающий только разделяет кучку строго пополам и получает нужные пары, беря в каждой половине верхнюю карту. В этой паре всегда окажутся король и дама одинаковой масти[6]).
Использование лицевой и обратной сторон карт
Сопоставление числа карт черной и красной масти
Из колоды выбирают десять карт: пять красных и пять черных. Карты какого-нибудь одного цвета переворачиваются, и все десять карт тщательно тасуются зрителем. На мгновение показывающий убирает карты за спину. Затем он протягивает руки вперед, держит в каждой из них по пяти карт, которые тут же раскладываются на столе. Число открытых карт в каждой пятерке оказывается одинаковым, и эти карты будут различного цвета. Например, если в одной пятерке окажутся три красные карты, то в другой пятерке будут открытыми три черные карты. Фокус можно повторять сколько угодно раз, и он будет всегда удаваться.
Объяснение. Нетрудно сообразить, что среди карт одной пятерки будет открытых карт (а они одного цвета, например черного) столько же, сколько закрытых (красных) в другой пятерке.
За спиной следует просто разделить пачку пополам и, прежде чем показать карты зрителям, перевернуть одну из половин. Таким образом, благодаря тому, что карты перевернуты, число открытых карт в каждой пятерке будет одинаковым и эти карты будут разного цвета. В этом фокусе, конечно, можно пользоваться любым четным числом карт, нужно только, чтобы половина их была красной, а половина — черной.
Фокус с перевертыванием карт
Показывающий передает зрителю пачку в 18 карт и просит его проделать над ними под столом так, чтобы никто не видел, следующие операции: перевернуть верхнюю пару карт (т. е. две верхние карты, взятые вместе) и «снять» пачку, еще раз перевернуть верхнюю пару карт и снова снять. Так зритель может продолжать, сколько ему заблагорассудится. Ясно, что в результате этих действий карты перемещаются совершенно непредвиденным образом, причем ни число, ни положение открытых карт в колоде показывающему не могут быть известны. Затем показывающий, усевшись на противоположной от зрителя стороне стола, протягивает под столом руку и берет пачку. Оставляя руки под столом (так что никто, включая самого показывающего, не может видеть его действии над картами), он объявляет, что сейчас вынет пачку и в ней окажется столько-то открытых карт. Он называет число.
Карты вынимаются из-под стола и раскладываются.
Названное число оказывается правильным.
Объяснение. Фокус получается совершенно автоматически. Для того чтобы ои вышел, нужно лишь, спрятав карты под стол, пройтись по ним, переворачивая каждую вторую карту. После этого объявляется, что в пачке находится девять открытых карт (т. е. число, равное половине числа взятых карт). Фокус всегда получится, если для него брать любое четное число карт.
Фокусы, зависящие от первоначального расположения карт в колоде
Фокус с четырьмя тузами
Показывающий просит кого-нибудь назвать число между 10 и 20 и откладывает одну за другой это число карт в кучку. Затем он находит сумму цифр названного числа, снимает сверху кучки число карт, равное этой сумме, и кладет их обратно на верх колоды.
Карта, оказавшаяся в кучке верхней, откладывается в сторону лицевой стороной вниз, а все остальные карты кучки возвращаются на верх колоды. Снова показывающий просит назвать любое число между 10 и 20 и проделывает то же самое вторично. Так третий и четвертый раз, пока этим способом не будут отобраны четыре карты. Эти четыре карты открываются — и все они оказываются тузами!
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.